-
为了计算微波器件的微放电阈值,提出了一种快速单粒子蒙特卡罗方法. 该方法对二次电子出射能量、出射角度和相位等参数进行随机处理,结合四阶龙格库塔法和Furman模型模拟了电子运动和二次电子发射系数,并以多次连续碰撞的二次电子发射系数的算数平均值作为微放电效应发生的判据. 以平板传输线横电磁模式为研究对象,分别采用快速单粒子蒙特卡罗方法、统计模型、传统蒙特卡罗方法以及粒子模拟方法计算其微放电阈值和敏感区域. 计算结果表明,该方法不仅具有与统计模型和粒子模拟方法相当的计算精度,而且比统计模型方法的适应性更强,比传统蒙特卡罗方法的稳定性更好,比粒子模拟方法的计算效率高几十倍以上.To compute the breakdown thresholds of multipactor in microwave devices, a fast single particle Monte-Carlo (SP-MC) method is presented, which considers the random nature of secondary electrons and their initial energies, phases and angles. With Runge-Kutta method and Furman model, the motion of the electron and the secondary electron yield (SEY) of the wall of the device are computed. An effective SEY is regarded as a criterion to estimate whether multipactor occurs, which is computed by averaging the SEYs for all impacts. As an example, the multipactor in a transmission line composed of parallel plates is investigated with the presented SP-MC method, traditional Monte-Carlo method, statistical theory method and particle-in-cell method separately. The results obtained from the SP-MC method accord well with those from the statistical theory method and particle-in-cell method, including the results of the susceptibility zones, break thresholds on specific products of frequency and gap space. Moreover, the SP-MC method is more adaptive than the statistical theory method, more stable than the traditional Monte-Carlo method and much more efficient than the particle-in-cell method.
-
Keywords:
- multipactor /
- single particle Monte-Carlo method /
- parallel plates transmission line /
- susceptibility zone
[1] Farnsworth P 1934 J. Franklin Inst. 218 411
[2] Vaughan J 1988 IEEE Trans. Electron Dev. 35 1172
[3] Gill E W B, Engel A V 1948 Proc. Roy. Soc. London A 192 446
[4] Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580
[5] Anza S, Vicente C, Gil J, Boria V E, Gimeno B, Raboso D 2010 Phys. Plasmas 17 062110
[6] Lau Y Y, Kishek R A, Gilgenbach R M 1988 IEEE Trans. Plasma Sci. 26 290
[7] Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193
[8] Nieter C, Stoltz P H, Roark C, Mahalingam S 2010 AIP Conf. Proc. 1299 399
[9] Sazontov A G, Sazontov V A, Vdovicheva N K 2008 Contrib. Plasma Phys. 48 331
[10] Udiljak R, Anderson D, Lisak M, Semenov V E, Puech J 2007 Phys. Plasmas 14 033508
[11] Zhu F, Zhang Z C, Dai S, Luo J R 2011 Acta Phys. Sin. 60 084103 (in Chinese) [朱方, 张兆传, 戴舜, 罗积润2011 60 084103]
[12] Dong Y, Dong Z W, Yang W Y 2011 High Power Laser Particle Beams 23 454 (in Chinese) [董烨, 董志伟, 杨温渊 2011强激光与粒子束 23 454]
[13] Li X Y, Chen C M 2008 Math. Theory Appl. 28 62 (in Chinese) [李夏云, 陈传淼 2008 数学理论与应用28 62]
[14] Rodney J, Vaughan M 1989 IEEE Trans. Electron Dev. 36 1963
[15] Li Y D, Yang W J, Zhang N, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 077901 (in Chinese) [李永东, 杨文晋, 张娜, 崔万照, 刘纯亮2013 62 077901]
[16] Nieter C, Cary J R 2004 J. Comput. Phys. 196 448
-
[1] Farnsworth P 1934 J. Franklin Inst. 218 411
[2] Vaughan J 1988 IEEE Trans. Electron Dev. 35 1172
[3] Gill E W B, Engel A V 1948 Proc. Roy. Soc. London A 192 446
[4] Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580
[5] Anza S, Vicente C, Gil J, Boria V E, Gimeno B, Raboso D 2010 Phys. Plasmas 17 062110
[6] Lau Y Y, Kishek R A, Gilgenbach R M 1988 IEEE Trans. Plasma Sci. 26 290
[7] Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193
[8] Nieter C, Stoltz P H, Roark C, Mahalingam S 2010 AIP Conf. Proc. 1299 399
[9] Sazontov A G, Sazontov V A, Vdovicheva N K 2008 Contrib. Plasma Phys. 48 331
[10] Udiljak R, Anderson D, Lisak M, Semenov V E, Puech J 2007 Phys. Plasmas 14 033508
[11] Zhu F, Zhang Z C, Dai S, Luo J R 2011 Acta Phys. Sin. 60 084103 (in Chinese) [朱方, 张兆传, 戴舜, 罗积润2011 60 084103]
[12] Dong Y, Dong Z W, Yang W Y 2011 High Power Laser Particle Beams 23 454 (in Chinese) [董烨, 董志伟, 杨温渊 2011强激光与粒子束 23 454]
[13] Li X Y, Chen C M 2008 Math. Theory Appl. 28 62 (in Chinese) [李夏云, 陈传淼 2008 数学理论与应用28 62]
[14] Rodney J, Vaughan M 1989 IEEE Trans. Electron Dev. 36 1963
[15] Li Y D, Yang W J, Zhang N, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 077901 (in Chinese) [李永东, 杨文晋, 张娜, 崔万照, 刘纯亮2013 62 077901]
[16] Nieter C, Cary J R 2004 J. Comput. Phys. 196 448
计量
- 文章访问数: 6748
- PDF下载量: 530
- 被引次数: 0