搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

垂直振动床中的能量传递与耗散

刘传平 王立 张富翁

引用本文:
Citation:

垂直振动床中的能量传递与耗散

刘传平, 王立, 张富翁

Energy transfer and dissipation in vibrational granular bed

Liu Chuan-Ping, Wang Li, Zhang Fu-Weng
PDF
导出引用
  • 本文采用数值方法分析了一维垂直振动床内颗粒动能/温度、能量耗散以及体积分数的分布规律. 离散元模拟结果表明: 当床底做低频、小振幅振动时,床层内颗粒整体随床底上下运动,沿床高方向颗粒动能逐渐增加;对于高频振动,床层内的颗粒做无规则的运动,沿床高方向颗粒动能逐渐降低.在不同振动频率(高频、低频)下体积分数、能量耗散也表现出不同的分布规律. 将离散元模拟结果与动力学理论计算值对比,当系统做高频振动时,两模型所得结果基本吻合;而对于低频、小振幅振动,所得结果存在较大差异. 由于低频、小振幅振动时床内颗粒并非做无规则运动,动力学理论的适用性需进一步完善.
    By using numerical simulation, the kinetic energy/temperature, the energy dissipation and the volume fraction in a 1D vertical vibrational bed are studied. Discrete element simulation shows that the granular bed moves up and down as an ensemble and the kinetic energy of the particles increases along the bed height when the bed bottom vibrates at a low-frequency and low-amplitude. For high-frequency vibrations, the particles in the bed move randomly and their kinetic energy decreases along the bed height. The energy dissipation and the volume fraction of the particles are also influenced by the vibrations frequency obviously, and they show different distributions at the high and low frequencies. In addition, we have compared the result of the discrete element simulation with that of the hydrodynamic simulation. When the bed bottom vibrates at high frequency, the two simulation methods can get the similar results. However, for the low-frequency and low-amplitude vibrations, the computed results are opposite to each other. Since the particles in the bed do not move and collide randomly, the application of the hydrodynamic simulation to the bed with low-frequency and low-amplitude vibrations should be investigated and discussed further.
    • 基金项目: 国家自然科学基金(批准号:51076010)和中央高校基本科研业务费(批准号:FRF-SD-12-013A, FRF-TP-12-053A)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51076010) and the Fundamental Research Fund for the Central Universities of China (Grant Nos. FRF-SD-12-013A, FRF-TP-12-053A).
    [1]

    Jaeger H M, Nagel S R 1996 Rev. Mod. Phys. 68 1259

    [2]

    Hu G Q, Tu H E, Hou M Y 2009 Acta Phys. Sin. 58 341 (in Chinese) [胡国琦, 徐洪恩, 厚美瑛 2009 58 341]

    [3]

    Peng Z, Jiang Y M, Liu R, Hou M Y 2013 Acta Phys. Sin. 62 024502 (in Chinese) [彭政, 蒋亦民, 刘锐, 厚美瑛 2013 62 024502]

    [4]

    Chen Y P, Pierre E, Hou M Y 2012 Chin. Phys. Lett. 29 074501

    [5]

    Ehrichs E E, Jaeger H M, Karczmar G S, Knight J B, Kuperman V Y, Nagel S R 1995 Nature 267 1632

    [6]

    Knight J B, Jaeger H M, Nagel S R 1993 Phys. Rev. Lett. 70 3728

    [7]

    Duran J, Rajchenbach J, Clement E 1993 Phys. Rev. Lett. 70 2431

    [8]

    Melo F, Umbanhowar P B, Swinney H L 1994 Phys. Rev. Lett. 72 172

    [9]

    Fraige F Y, Langston P A, Matchett A J, Dodds J 2008 Particuology 6 455

    [10]

    Zhou G D, Sun Q C 2013 Powder Technol. 239 115

    [11]

    Li R, Xiao M, Li Z H, Zhang D M 2012 Chin. Phys. Lett. 29 128103

    [12]

    Cai Q D, Chen S Y, Sheng X W 2011 Chin. Phys. B 20 024502

    [13]

    Jenkins J T, Richman M W 1985 Phys. Fluids 28 3485

    [14]

    Dufty J W, Brey J J 2003 Phys. Rev. E 68 030302

    [15]

    Giardiná C, Livi R, Politi A, Vassalli M 2000 Phys. Rev. Lett. 84 2144

    [16]

    Dhar A, Saito K 2008 Phys. Rev. E 78 061136

    [17]

    Ítalo’Ivo L D P, Rosas A, Lindenberg K 2009 Phys. Rev. E 79 061307

    [18]

    Mindlin R D, Deresezewicz H 1953 J. Appl. Mech. 20 327

    [19]

    Wildman R D, Huntley J M 2003 Phys. Fluids 15 3090

    [20]

    Viswanathan H, Wildman R D, Huntley J M, Martin T W 2006 Phys. Fluids 18 113302

    [21]

    Carnahan N F, Starling K E 1969 J. Chem. Phys. 51 635

    [22]

    Richman M W 1993 Mech. Mater. 16 211

  • [1]

    Jaeger H M, Nagel S R 1996 Rev. Mod. Phys. 68 1259

    [2]

    Hu G Q, Tu H E, Hou M Y 2009 Acta Phys. Sin. 58 341 (in Chinese) [胡国琦, 徐洪恩, 厚美瑛 2009 58 341]

    [3]

    Peng Z, Jiang Y M, Liu R, Hou M Y 2013 Acta Phys. Sin. 62 024502 (in Chinese) [彭政, 蒋亦民, 刘锐, 厚美瑛 2013 62 024502]

    [4]

    Chen Y P, Pierre E, Hou M Y 2012 Chin. Phys. Lett. 29 074501

    [5]

    Ehrichs E E, Jaeger H M, Karczmar G S, Knight J B, Kuperman V Y, Nagel S R 1995 Nature 267 1632

    [6]

    Knight J B, Jaeger H M, Nagel S R 1993 Phys. Rev. Lett. 70 3728

    [7]

    Duran J, Rajchenbach J, Clement E 1993 Phys. Rev. Lett. 70 2431

    [8]

    Melo F, Umbanhowar P B, Swinney H L 1994 Phys. Rev. Lett. 72 172

    [9]

    Fraige F Y, Langston P A, Matchett A J, Dodds J 2008 Particuology 6 455

    [10]

    Zhou G D, Sun Q C 2013 Powder Technol. 239 115

    [11]

    Li R, Xiao M, Li Z H, Zhang D M 2012 Chin. Phys. Lett. 29 128103

    [12]

    Cai Q D, Chen S Y, Sheng X W 2011 Chin. Phys. B 20 024502

    [13]

    Jenkins J T, Richman M W 1985 Phys. Fluids 28 3485

    [14]

    Dufty J W, Brey J J 2003 Phys. Rev. E 68 030302

    [15]

    Giardiná C, Livi R, Politi A, Vassalli M 2000 Phys. Rev. Lett. 84 2144

    [16]

    Dhar A, Saito K 2008 Phys. Rev. E 78 061136

    [17]

    Ítalo’Ivo L D P, Rosas A, Lindenberg K 2009 Phys. Rev. E 79 061307

    [18]

    Mindlin R D, Deresezewicz H 1953 J. Appl. Mech. 20 327

    [19]

    Wildman R D, Huntley J M 2003 Phys. Fluids 15 3090

    [20]

    Viswanathan H, Wildman R D, Huntley J M, Martin T W 2006 Phys. Fluids 18 113302

    [21]

    Carnahan N F, Starling K E 1969 J. Chem. Phys. 51 635

    [22]

    Richman M W 1993 Mech. Mater. 16 211

  • [1] 马奥杰, 陈颂佳, 李玉秀, 陈颖. 纳米颗粒布朗扩散边界条件的分子动力学模拟.  , 2021, 70(14): 148201. doi: 10.7498/aps.70.20202240
    [2] 郑麟, 莫松平, 李玉秀, 陈颖, 徐进良. 薄层剪切二元颗粒分离过程动力学特性分析.  , 2019, 68(16): 164703. doi: 10.7498/aps.68.20190322
    [3] 秦立振, 张振宇, 张坤, 丁建桥, 段智勇, 苏宇锋. 抗磁悬浮振动能量采集器动力学响应的仿真分析.  , 2018, 67(1): 018501. doi: 10.7498/aps.67.20171551
    [4] 崔曼, 薛惠锋, 陈福振, 卜凡彪. 道路交通的流体物理模型与粒子仿真方法.  , 2017, 66(22): 224501. doi: 10.7498/aps.66.224501
    [5] 陈福振, 强洪夫, 苗刚, 高巍然. 燃料抛撒成雾及其燃烧爆炸的光滑离散颗粒流体动力学方法数值模拟研究.  , 2015, 64(11): 110202. doi: 10.7498/aps.64.110202
    [6] 焦杨, 章新喜, 孔凡成, 刘海顺. 湿颗粒聚团碰撞解聚过程的离散元法模拟.  , 2015, 64(15): 154501. doi: 10.7498/aps.64.154501
    [7] 韩燕龙, 贾富国, 曾勇, 王爱芳. 受碾区域内颗粒轴向流动特性的离散元模拟.  , 2015, 64(23): 234502. doi: 10.7498/aps.64.234502
    [8] 陈福振, 强洪夫, 高巍然. 气粒两相流传热问题的光滑离散颗粒流体动力学方法数值模拟.  , 2014, 63(23): 230206. doi: 10.7498/aps.63.230206
    [9] 孟凡净, 刘焜. 密集剪切颗粒流中速度波动和自扩散特性的离散元模拟.  , 2014, 63(13): 134502. doi: 10.7498/aps.63.134502
    [10] 赵啦啦, 赵跃民, 刘初升, 李珺. 湿颗粒堆力学特性的离散元法模拟研究.  , 2014, 63(3): 034501. doi: 10.7498/aps.63.034501
    [11] 高红利, 陈友川, 赵永志, 郑津洋. 薄滚筒内二元湿颗粒体系混合行为的离散单元模拟研究.  , 2011, 60(12): 124501. doi: 10.7498/aps.60.124501
    [12] 赵啦啦, 刘初升, 闫俊霞, 徐志鹏. 颗粒分层过程三维离散元法模拟研究.  , 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [13] 宜晨虹, 慕青松, 苗天德. 重力作用下颗粒介质应力链的离散元模拟.  , 2009, 58(11): 7750-7755. doi: 10.7498/aps.58.7750
    [14] 钟文镇, 何克晶, 周照耀, 夏伟, 李元元. 颗粒离散元模拟中的阻尼系数标定.  , 2009, 58(8): 5155-5161. doi: 10.7498/aps.58.5155
    [15] 赵永志, 江茂强, 徐平, 郑津洋. 颗粒堆内微观力学结构的离散元模拟研究.  , 2009, 58(3): 1819-1825. doi: 10.7498/aps.58.1819
    [16] 宜晨虹, 慕青松, 苗天德. 带有点缺陷的二维颗粒系统离散元模拟.  , 2008, 57(6): 3636-3640. doi: 10.7498/aps.57.3636
    [17] 鲁录义, 顾兆林, 罗昔联, 雷康斌. 一种风沙运动的颗粒动力学静电起电模型.  , 2008, 57(11): 6939-6945. doi: 10.7498/aps.57.6939
    [18] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟.  , 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [19] 姜泽辉, 王运鹰, 吴 晶. 窄振动颗粒床中的运动模式.  , 2006, 55(9): 4748-4753. doi: 10.7498/aps.55.4748
    [20] 姜泽辉, 刘新影, 彭雅晶, 李建伟. 竖直振动颗粒床中的倍周期运动.  , 2005, 54(12): 5692-5698. doi: 10.7498/aps.54.5692
计量
  • 文章访问数:  6030
  • PDF下载量:  525
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-04
  • 修回日期:  2013-11-26
  • 刊出日期:  2014-02-05

/

返回文章
返回
Baidu
map