搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多物理场的TFC磁头热传导机理及其影响因素仿真研究

敖宏瑞 陈漪 董明 姜洪源

引用本文:
Citation:

基于多物理场的TFC磁头热传导机理及其影响因素仿真研究

敖宏瑞, 陈漪, 董明, 姜洪源

Multiphysics-based simulation on heat conduction mechanism of TFC head and its influencing factors

Ao Hong-Rui, Chen Yi, Dong Ming, Jiang Hong-Yuan
PDF
导出引用
  • 为了利用微尺度热效应的热致飞高控制(TFC)磁头技术实现磁头飞行高度的精确控制,分析了工作状态下TFC滑块在多物理场综合作用下所呈现出来的传热特性及其主要影响因素,考虑了磁头磁盘间超薄气膜的稀薄效应,建立滑块导热、空气轴承表面传热、气膜流动等模型,利用有限元法,对磁头热变形作用机理及热传导特性对滑块动力学特性影响进行了仿真研究,结果表明,建立的传热模型及对雷诺方程的修正适用于求解磁头磁盘界面气膜传热问题和磁头滑块的动力学问题;影响滑块热力学性能的因素主要可以归结为加热器高度、热生成率以及材料的传热系数;空气轴承力及工作表面热变形的双重作用决定了滑块飞行高度的改变. 仿真结果为磁头滑块加热器的设计及空气轴承动力学特性分析提供了依据.
    In order to precisely control the flying height of TFC head with consideration of microscale thermal effect, the thermal conducting characteristics and the influencing factors on TFC slider which is in an operation and multi-physics field condition were analyzed. In consideration of rarefaction effect of ultra-thin film at the head/disk interface, the models of slider heat conduction, air bearing surface heat transfer, and gas flow were established; the thermal deformation mechanism and the effect of thermal conduction on dynamic characteristics of slider were analyzed by using finite element method. Results show that the thermal conducting model and the proposed modification of Reynolds equation in this study are suitable for solving the problems of thermal deformation and dynamic characteristics of head slider. The main parameters that influence the thermal property of slider can be considered to be the heater height, heat generation rate, and the heat conductivity coefficient of the material. The change of the slider flying height is determined by the air bearing force and the air bearing surface thermal extrusion at the head/disk interface. Simulation results provide a basis for the design of heater in head slider and analysis of dynamic characteristics of air bearing.
    • 基金项目: 国家自然科学基金(批准号:51275124)和黑龙江省留学归国基金(批准号:LC201032)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51275124), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Heilongjiang Province (Grant No. LC201032).
    [1]

    Zhang L, Zu X T 2006 Acta Phys. Sin. 55 4271 (in Chinese) [章黎, 祖小涛 2006 55 4271]

    [2]

    Li X, Hu Y Z, Wang H 2005 Acta Phys. Sin. 54 3787 (in Chinese) [李欣, 胡元中, 王慧 2005 54 3787]

    [3]

    Zhang S, Bogy D B 1999 Int’l J. Heat and Mass Transfer 42 1791

    [4]

    Juang J Y, Bogy D B 2007 ASME J. Tribo. 129 570

    [5]

    Chen L, Bogy D B, Strom B 2000 IEEE Trans. Magn. 36 2486

    [6]

    Sungtaek J Y 2000 J. Heat Transfer 122 817

    [7]

    Zhou W D, Liu B, Yu S K 2008 Applied Phy. Lett. 92 043109

    [8]

    Liu M Q, Li B C 2008 Acta Phys. Sin. 57 3402 (in Chinese) [刘明强, 李斌成 2008 57 3402]

    [9]

    Liu X B, Guo Z Y 2009 Acta Phys. Sin. 58 4766 (in Chinese) [柳雄斌, 过增元 2009 58 4766]

    [10]

    Sun J, Liu W Q 2013 Acta Phys. Sin. 62 074401 (in Chinese) [孙健, 刘伟强 2013 62 074401]

    [11]

    Song B, Wu J, Guo Z Y 2010 Acta Phys. Sin. 59 7129 (in Chinese) [宋柏, 吴晶, 过增元 2006 59 7129]

    [12]

    Juang J Y, Bogy D B 2006 IEEE Trans. Magn. 42 241

    [13]

    Li H, Liu B, Chong T 2005 Proceedings of the INTERMAG Asia 2005 Nagoya, Japan, April 4–8 2005 p1391–1392

    [14]

    Burgdorfer A 1959 Trans. ASME, Ser. D 81 94

    [15]

    Hsia Y T, Domoto G A 1983 J. Lubr. Tech. 105 120

    [16]

    Gans R F 1985 J. Trib. 107 431

    [17]

    Cai J, Huai X L 2009 Chin. Phys. Lett. 26 064401

    [18]

    Seripah A K, Ishak H, Sim S J 2007 Chin. Phys. Lett. 27 1981

    [19]

    Fukui S, Kaneko R 1988 J. Trib. 110 253

    [20]

    Yang T Y, Shi B J 2010 Lubrication Engineering 6 73 (in Chinese) [杨廷毅, 史宝军 2010 润滑与密封 6 73]

    [21]

    Bai S X, Peng X D, Meng Y G 2009 China Mech. Eng. 10 1 (in Chinese) [白少先, 彭旭东, 孟永钢 2009 中国机械工程 10 1]

    [22]

    Wei H D, Ao H R, Jiang H Y 2009 J. of Harbin Inst. of Tech. 41 682 (in Chinese) [魏浩东, 敖宏瑞, 姜洪源 2009 哈尔滨工业大学学报 41 682]

    [23]

    Liu J 2001 Micro/Nano Scale Heat Transfer (Beijing: Science Press) p73 (in Chinese) [刘静 2001 微米/纳米尺度传热学(北京: 科学出版社)第73页]

    [24]

    Vinogradova O I 1995 Langmuir 11 2213

    [25]

    Wang G, An L 2012 COMSOL Multiphysics Engineering Practice and Theoretical Simulation (Beijing: Pressing House of Electronics Industry) p103 (in Chinese) [王刚, 安琳 2012 COMSOL Multiphysics工程实践与理论仿真(北京: 电子工业出版社)第103 页]

  • [1]

    Zhang L, Zu X T 2006 Acta Phys. Sin. 55 4271 (in Chinese) [章黎, 祖小涛 2006 55 4271]

    [2]

    Li X, Hu Y Z, Wang H 2005 Acta Phys. Sin. 54 3787 (in Chinese) [李欣, 胡元中, 王慧 2005 54 3787]

    [3]

    Zhang S, Bogy D B 1999 Int’l J. Heat and Mass Transfer 42 1791

    [4]

    Juang J Y, Bogy D B 2007 ASME J. Tribo. 129 570

    [5]

    Chen L, Bogy D B, Strom B 2000 IEEE Trans. Magn. 36 2486

    [6]

    Sungtaek J Y 2000 J. Heat Transfer 122 817

    [7]

    Zhou W D, Liu B, Yu S K 2008 Applied Phy. Lett. 92 043109

    [8]

    Liu M Q, Li B C 2008 Acta Phys. Sin. 57 3402 (in Chinese) [刘明强, 李斌成 2008 57 3402]

    [9]

    Liu X B, Guo Z Y 2009 Acta Phys. Sin. 58 4766 (in Chinese) [柳雄斌, 过增元 2009 58 4766]

    [10]

    Sun J, Liu W Q 2013 Acta Phys. Sin. 62 074401 (in Chinese) [孙健, 刘伟强 2013 62 074401]

    [11]

    Song B, Wu J, Guo Z Y 2010 Acta Phys. Sin. 59 7129 (in Chinese) [宋柏, 吴晶, 过增元 2006 59 7129]

    [12]

    Juang J Y, Bogy D B 2006 IEEE Trans. Magn. 42 241

    [13]

    Li H, Liu B, Chong T 2005 Proceedings of the INTERMAG Asia 2005 Nagoya, Japan, April 4–8 2005 p1391–1392

    [14]

    Burgdorfer A 1959 Trans. ASME, Ser. D 81 94

    [15]

    Hsia Y T, Domoto G A 1983 J. Lubr. Tech. 105 120

    [16]

    Gans R F 1985 J. Trib. 107 431

    [17]

    Cai J, Huai X L 2009 Chin. Phys. Lett. 26 064401

    [18]

    Seripah A K, Ishak H, Sim S J 2007 Chin. Phys. Lett. 27 1981

    [19]

    Fukui S, Kaneko R 1988 J. Trib. 110 253

    [20]

    Yang T Y, Shi B J 2010 Lubrication Engineering 6 73 (in Chinese) [杨廷毅, 史宝军 2010 润滑与密封 6 73]

    [21]

    Bai S X, Peng X D, Meng Y G 2009 China Mech. Eng. 10 1 (in Chinese) [白少先, 彭旭东, 孟永钢 2009 中国机械工程 10 1]

    [22]

    Wei H D, Ao H R, Jiang H Y 2009 J. of Harbin Inst. of Tech. 41 682 (in Chinese) [魏浩东, 敖宏瑞, 姜洪源 2009 哈尔滨工业大学学报 41 682]

    [23]

    Liu J 2001 Micro/Nano Scale Heat Transfer (Beijing: Science Press) p73 (in Chinese) [刘静 2001 微米/纳米尺度传热学(北京: 科学出版社)第73页]

    [24]

    Vinogradova O I 1995 Langmuir 11 2213

    [25]

    Wang G, An L 2012 COMSOL Multiphysics Engineering Practice and Theoretical Simulation (Beijing: Pressing House of Electronics Industry) p103 (in Chinese) [王刚, 安琳 2012 COMSOL Multiphysics工程实践与理论仿真(北京: 电子工业出版社)第103 页]

  • [1] 李冀, 陈亮, 冯芒. 基于离子阱中离子晶体的热传导的研究进展.  , 2024, 73(3): 033701. doi: 10.7498/aps.73.20231719
    [2] 罗天麟, 丁亚飞, 韦宝杰, 杜建迎, 沈翔瀛, 朱桂妹, 李保文. 低维微纳尺度体系声子热传导和热调控: 来自芯片散热的非平衡统计物理问题.  , 2023, 72(23): 234401. doi: 10.7498/aps.72.20231546
    [3] 赵罡, 梁汉普, 段益峰. 二维X-AlN (X = C, Si, TC) 半导体的可见光调控与反常热输运.  , 2023, 72(9): 096301. doi: 10.7498/aps.72.20230116
    [4] 苏瑞霞, 黄霞, 郑志刚. 耦合Frenkel-Kontorova双链的格波解及其色散关系.  , 2022, 71(15): 154401. doi: 10.7498/aps.71.20212362
    [5] 秦成龙, 罗祥燕, 谢泉, 吴乔丹. 碳纳米管和碳化硅纳米管热导率的分子动力学研究.  , 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [6] 曹义刚, 付萌萌, 杨喜昶, 李登峰, 王晓霞. 热传导对横截面不同的直管道中Kelvin-Helmholtz不稳定性的影响.  , 2022, 71(9): 094701. doi: 10.7498/aps.71.20211155
    [7] 包立平, 李文彦, 吴立群. 热传导系数跳跃的三维非Fourier温度场分布的奇摄动双参数解.  , 2019, 68(20): 204401. doi: 10.7498/aps.68.20190144
    [8] 曾立, 刘国标, 章海锋, 黄通. 一款基于多物理场调控的超宽带线-圆极化转换器.  , 2019, 68(5): 054101. doi: 10.7498/aps.68.20181615
    [9] 吴文智, 高来勖, 孔德贵, 高扬, 冉玲苓, 柴志军. 基于飞秒瞬态反射/透射技术的纳米Au半透膜热效应研究.  , 2016, 65(4): 046801. doi: 10.7498/aps.65.046801
    [10] 陈福振, 强洪夫, 高巍然. 气粒两相流传热问题的光滑离散颗粒流体动力学方法数值模拟.  , 2014, 63(23): 230206. doi: 10.7498/aps.63.230206
    [11] 袁宗强, 褚敏, 郑志刚. Fermi-Pasta-Ulam β 格点链系统能量载流子研究.  , 2013, 62(8): 080504. doi: 10.7498/aps.62.080504
    [12] 马艳红, 仝小龙, 朱彬, 张大义, 洪杰. 金属橡胶热物理性能理论与试验研究.  , 2013, 62(4): 048101. doi: 10.7498/aps.62.048101
    [13] 黎威志, 王军. 直流法测试薄膜热导的数值模拟研究.  , 2012, 61(11): 114401. doi: 10.7498/aps.61.114401
    [14] 高秀云, 郑志刚. 一维均匀Morse晶格体系的热流棘齿效应.  , 2011, 60(4): 044401. doi: 10.7498/aps.60.044401
    [15] 张世来, 刘福生, 彭小娟, 张明建, 李永宏, 马小娟, 薛学东. 纳秒尺度金属熔化相变数值模拟及实验验证.  , 2011, 60(1): 014401. doi: 10.7498/aps.60.014401
    [16] 王军, 李京颍, 郑志刚. 热整流效应的消失与翻转现象.  , 2010, 59(1): 476-481. doi: 10.7498/aps.59.476
    [17] 周桂耀, 侯峙云, 潘普丰, 侯蓝田, 李曙光, 韩 颖. 微结构光纤预制棒拉制过程的温度场分布.  , 2006, 55(3): 1271-1275. doi: 10.7498/aps.55.1271
    [18] 秦 颖, 王晓钢, 董 闯, 郝胜智, 刘 悦, 邹建新, 吴爱民, 关庆丰. 强流脉冲电子束诱发温度场及表面熔坑的形成.  , 2003, 52(12): 3043-3048. doi: 10.7498/aps.52.3043
    [19] 李富斌. 非平衡涨落问题的微观唯象分析理论(Ⅱ)——物理系统中的非平衡涨落与由信息理论所求得的热传导精确结果的比较.  , 1989, 38(10): 1642-1647. doi: 10.7498/aps.38.1642
    [20] 王竹溪. 物质内部有辐射的热传导问题.  , 1962, 18(1): 11-26. doi: 10.7498/aps.18.11
计量
  • 文章访问数:  6856
  • PDF下载量:  590
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-15
  • 修回日期:  2013-10-30
  • 刊出日期:  2014-02-05

/

返回文章
返回
Baidu
map