搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双流体等离子体模型的动力学可容变分

邹丹旦 杨维紘

引用本文:
Citation:

双流体等离子体模型的动力学可容变分

邹丹旦, 杨维紘

Dynamically accessible variations for two-fluid plasma model

Zou Dan-Dan, Yang Wei-Hong
PDF
导出引用
  • 动力学可容变分方法是一种广义哈密顿系统中的李扰动变换方法,能自动保证卡西米尔函数在相应阶数上的守恒性质. 通过动力学可容方法得到了双流体在欧拉描述中的一组约束变分,而后利用这组变分对双流体哈密顿量取极值得到了平衡方程.
    Dynamically accessible perturbation is a type of Lie perturbation for noncanonical Hamiltonian systems. Firstly, a set of first-order constraint variations that preserve all the Casimir functions is presented based on the two-fluid Poisson bracket. Then the equilibrium equations are given by minimizing the two-fluid Hamiltonian with these variations.
    • 基金项目: 国家自然科学基金(批准号:11375190)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11375190).
    [1]

    Lin C C 1961 Proceedings of the International School, Enrico Fermi, Varenna, in Proceedings of the International School of Physics, edited by G.Careri (Academic, New York) XXI p 93

    [2]

    Lamb H 1932 Hydrodynamics (Cambridge Univ. Press, Cambridge) p14

    [3]

    Newcomb W A 1962 Nucl. Fusion Suppl (part 2) p451

    [4]

    Cendra H, Marsden J 1987 Physica D 27 63

    [5]

    Cao X Q, Song J Q, Zhang W M, Zhu X Q, Zhao J 2011 Acta Phys. Sin. 60 080401 (in Chinese) [曹小群, 宋君强, 张卫民, 朱小谦, 赵军 2011 60 080401]

    [6]

    Cao X Q, Song J Q, Zhang W M, Zhao J 2011 Chin. Phys. B 20 090401

    [7]

    Marsden J 1994 Introduction to Mechanics and Symmetry (Springer-Verlag New York)

    [8]

    Salmon R 1988 Ann. Rev. Fluid Mech. 20 225

    [9]

    Kambe T 2010 Geometrical theory of dynamical systems and velocity field (World Scientific, Singapore) p1

    [10]

    Jing H X, Li Y C, Xia L L 2007 Acta Phys. Sin. 56 3049 (in Chinese) [荆宏星, 李元成, 夏丽莉 2007 56 3049]

    [11]

    Shi L F, Mo J Q 2013 Acta Phys. Sin. 62 040203 (in Chinese) [石兰芳, 莫嘉琪. 2013 62 040203]

    [12]

    Morrison P, Greene J 1980 Phys. Rev. Lett. 45 790

    [13]

    Morrison P 1998 Rev. Mod. Phys. 70 467

    [14]

    Marsden J, Weinstein A 1982 Physica D 4 394

    [15]

    Spencer R, Kaufman A N 1982 Phys. Rev. A 25 2437

    [16]

    Spencer R 1984 J. Math. Phys. 25 2390

    [17]

    Kaufman A N 1984 Physics Letters A 100 8

    [18]

    Morrison P 1986 Physica D 18 1

    [19]

    Guha P 2007 Journal of Mathematical Analysis and Applications 326

    [20]

    Goldstein H 2002 Classical Mechanics. Prentice Hall, 3rd edition

    [21]

    Arnold V I 1978 Mathematical Method of Classical Mechanics (Springer-Verlag, New York)

    [22]

    Li J B, Zhao X H, Liu Z R 1994 Theory and Application of Generalized Hamilton Systems (Beijing: Science Press) (in Chinese) [李继彬, 赵晓华, 刘正荣 2007 广义哈密顿系统理论及其应用(北京: 科学出版社)]

    [23]

    Jiang W A, Luo S K 2011 Acta Phys. Sin. 60 060201 (in Chinese) [姜文安, 罗绍凯 2011 60 060201]

    [24]

    LI Y M 2010 Chin. Phys. Lett. 27 1

    [25]

    Li Y C, Xia L L, Wang X M, Liu X W 2010 Acta Phys. Sin. 59 3639 (in Chinese) [李元成, 夏丽莉, 王小明, 刘晓巍 2010 59 3642]

    [26]

    Zhang Y 2012 Acta Phys. Sin. 61 214501 (in Chinese) [张毅 2012 61 214501]

    [27]

    Arnold V 1963 Usp. Mat. Nauk (Sov. Math. Usp.) 18 85

    [28]

    Holm D D, Marsden J, Ratiu T, Weinstein A 1985 Physics Reports 123 1

    [29]

    Morrison P, Eliezer S 1986 Phys. Rev. A 33 4205

    [30]

    Hameiri E 1998 Phys. Plasmas 5 3270

    [31]

    Andreussi T, Morrison P, Pegoraro F 2010 Plasma Phys. Control. Fusion 52 055001

    [32]

    Arnold V I 1965 Journal of Applied Mathematics and Mechanics 29 5

    [33]

    Morrison P, Pfirsch D 1989 Physical Review A 40 7

    [34]

    Morrison P, Pfirsch D 1990 Physics of Fluids B 2 1105

    [35]

    Brizard A, Tracy E 2002 Mini-Conference, Bull. Am. Phys. Soc. 47 6

    [36]

    Hirota M, Yoshida Z, Hameiri E 2006 Phys. Plasmas 13 022107

    [37]

    Hameiri E 2003 Pysics of Plasmas 10 7

    [38]

    Isichenko M B 1998 Phys. Rev. Lett. 80 5

    [39]

    Hu X W 2006 Plasma theory foudamentals (Beijing: Beijing University Press) p219 (in Chinese) [(胡希伟 2006 等离子体理论基础 (北京: 北京大学出版社) 第219页]

    [40]

    Wang X, Xiao C, Pu Z, Wang J 2012 Chin. Sci. Bul. 57 12

    [41]

    Malyshkin L M 2009 Phys. Rev. Lett. 103 235004

    [42]

    Zou D D, Yang W H, Chen Y H, Yoon P H 2010 Phys. Plasmas 17 102102

    [43]

    Sahraoui F, Belmont G, Rezeau L 2003 Phys. Plasmas 10 1325

  • [1]

    Lin C C 1961 Proceedings of the International School, Enrico Fermi, Varenna, in Proceedings of the International School of Physics, edited by G.Careri (Academic, New York) XXI p 93

    [2]

    Lamb H 1932 Hydrodynamics (Cambridge Univ. Press, Cambridge) p14

    [3]

    Newcomb W A 1962 Nucl. Fusion Suppl (part 2) p451

    [4]

    Cendra H, Marsden J 1987 Physica D 27 63

    [5]

    Cao X Q, Song J Q, Zhang W M, Zhu X Q, Zhao J 2011 Acta Phys. Sin. 60 080401 (in Chinese) [曹小群, 宋君强, 张卫民, 朱小谦, 赵军 2011 60 080401]

    [6]

    Cao X Q, Song J Q, Zhang W M, Zhao J 2011 Chin. Phys. B 20 090401

    [7]

    Marsden J 1994 Introduction to Mechanics and Symmetry (Springer-Verlag New York)

    [8]

    Salmon R 1988 Ann. Rev. Fluid Mech. 20 225

    [9]

    Kambe T 2010 Geometrical theory of dynamical systems and velocity field (World Scientific, Singapore) p1

    [10]

    Jing H X, Li Y C, Xia L L 2007 Acta Phys. Sin. 56 3049 (in Chinese) [荆宏星, 李元成, 夏丽莉 2007 56 3049]

    [11]

    Shi L F, Mo J Q 2013 Acta Phys. Sin. 62 040203 (in Chinese) [石兰芳, 莫嘉琪. 2013 62 040203]

    [12]

    Morrison P, Greene J 1980 Phys. Rev. Lett. 45 790

    [13]

    Morrison P 1998 Rev. Mod. Phys. 70 467

    [14]

    Marsden J, Weinstein A 1982 Physica D 4 394

    [15]

    Spencer R, Kaufman A N 1982 Phys. Rev. A 25 2437

    [16]

    Spencer R 1984 J. Math. Phys. 25 2390

    [17]

    Kaufman A N 1984 Physics Letters A 100 8

    [18]

    Morrison P 1986 Physica D 18 1

    [19]

    Guha P 2007 Journal of Mathematical Analysis and Applications 326

    [20]

    Goldstein H 2002 Classical Mechanics. Prentice Hall, 3rd edition

    [21]

    Arnold V I 1978 Mathematical Method of Classical Mechanics (Springer-Verlag, New York)

    [22]

    Li J B, Zhao X H, Liu Z R 1994 Theory and Application of Generalized Hamilton Systems (Beijing: Science Press) (in Chinese) [李继彬, 赵晓华, 刘正荣 2007 广义哈密顿系统理论及其应用(北京: 科学出版社)]

    [23]

    Jiang W A, Luo S K 2011 Acta Phys. Sin. 60 060201 (in Chinese) [姜文安, 罗绍凯 2011 60 060201]

    [24]

    LI Y M 2010 Chin. Phys. Lett. 27 1

    [25]

    Li Y C, Xia L L, Wang X M, Liu X W 2010 Acta Phys. Sin. 59 3639 (in Chinese) [李元成, 夏丽莉, 王小明, 刘晓巍 2010 59 3642]

    [26]

    Zhang Y 2012 Acta Phys. Sin. 61 214501 (in Chinese) [张毅 2012 61 214501]

    [27]

    Arnold V 1963 Usp. Mat. Nauk (Sov. Math. Usp.) 18 85

    [28]

    Holm D D, Marsden J, Ratiu T, Weinstein A 1985 Physics Reports 123 1

    [29]

    Morrison P, Eliezer S 1986 Phys. Rev. A 33 4205

    [30]

    Hameiri E 1998 Phys. Plasmas 5 3270

    [31]

    Andreussi T, Morrison P, Pegoraro F 2010 Plasma Phys. Control. Fusion 52 055001

    [32]

    Arnold V I 1965 Journal of Applied Mathematics and Mechanics 29 5

    [33]

    Morrison P, Pfirsch D 1989 Physical Review A 40 7

    [34]

    Morrison P, Pfirsch D 1990 Physics of Fluids B 2 1105

    [35]

    Brizard A, Tracy E 2002 Mini-Conference, Bull. Am. Phys. Soc. 47 6

    [36]

    Hirota M, Yoshida Z, Hameiri E 2006 Phys. Plasmas 13 022107

    [37]

    Hameiri E 2003 Pysics of Plasmas 10 7

    [38]

    Isichenko M B 1998 Phys. Rev. Lett. 80 5

    [39]

    Hu X W 2006 Plasma theory foudamentals (Beijing: Beijing University Press) p219 (in Chinese) [(胡希伟 2006 等离子体理论基础 (北京: 北京大学出版社) 第219页]

    [40]

    Wang X, Xiao C, Pu Z, Wang J 2012 Chin. Sci. Bul. 57 12

    [41]

    Malyshkin L M 2009 Phys. Rev. Lett. 103 235004

    [42]

    Zou D D, Yang W H, Chen Y H, Yoon P H 2010 Phys. Plasmas 17 102102

    [43]

    Sahraoui F, Belmont G, Rezeau L 2003 Phys. Plasmas 10 1325

  • [1] 杨毅, 唐刚, 张哲, 寻之朋, 宋丽建, 韩奎. 科赫分形基底上受限固-固模型动力学标度行为的数值研究.  , 2015, 64(13): 130501. doi: 10.7498/aps.64.130501
    [2] 刘延柱, 薛纭. 基于高斯原理的Cosserat弹性杆动力学模型.  , 2015, 64(4): 044601. doi: 10.7498/aps.64.044601
    [3] 杨毅, 唐刚, 宋丽建, 寻之朋, 夏辉, 郝大鹏. 分形基底上受限固-固模型动力学性质的数值模拟研究.  , 2014, 63(15): 150501. doi: 10.7498/aps.63.150501
    [4] 章新友, L. J. Li, 黄永畅. 一般n阶特征量泛函的Euler-Lagrange方程及与定量因果原理、相对性原理和广义牛顿三定律的统一.  , 2014, 63(19): 190301. doi: 10.7498/aps.63.190301
    [5] 夏彬凯, 李剑锋, 李卫华, 张红东, 邱枫. 基于离散变分原理的耗散动力学模拟方法:模拟三维囊泡形状.  , 2013, 62(24): 248701. doi: 10.7498/aps.62.248701
    [6] 薛纭, 翁德玮, 陈立群. 精确Cosserat弹性杆动力学的分析力学方法.  , 2013, 62(4): 044601. doi: 10.7498/aps.62.044601
    [7] 张永伟, 唐刚, 韩奎, 寻之朋, 谢裕颖, 李炎. 分形基底上刻蚀模型动力学标度行为的数值模拟研究.  , 2012, 61(2): 020511. doi: 10.7498/aps.61.020511
    [8] 周先春, 林万涛, 林一骅, 姚静荪, 莫嘉琪. 一类扰动洛伦兹系统的解法.  , 2011, 60(11): 110207. doi: 10.7498/aps.60.110207
    [9] 吴兆春. 导热几何形状反演的变分原理及边界条件的确立.  , 2010, 59(9): 6326-6330. doi: 10.7498/aps.59.6326
    [10] 葛伟宽, 梅凤翔. 广义Birkhoff系统的时间积分定理.  , 2009, 58(2): 699-702. doi: 10.7498/aps.58.699
    [11] 张 毅. 事件空间中力学系统的微分变分原理.  , 2007, 56(2): 655-660. doi: 10.7498/aps.56.655
    [12] 葛伟宽, 梅凤翔. Birkhoff系统的时间积分定理.  , 2007, 56(5): 2479-2481. doi: 10.7498/aps.56.2479
    [13] 薛 纭, 刘延柱, 陈立群. Kirchhoff弹性杆动力学建模的分析力学方法.  , 2006, 55(8): 3845-3851. doi: 10.7498/aps.55.3845
    [14] 黄永畅, 李希国. 不同积分变分原理的统一.  , 2005, 54(8): 3473-3479. doi: 10.7498/aps.54.3473
    [15] 江金环, 李子平. 基于全息聚焦机理空间光孤子的相互作用势函数.  , 2004, 53(9): 2991-2994. doi: 10.7498/aps.53.2991
    [16] 陈 洪, 阎玉立, 梅 花. 磁性薄膜热动力学性质的变分累积展开研究.  , 2003, 52(10): 2607-2611. doi: 10.7498/aps.52.2607
    [17] 谷云鹏, 马腾才. 粒子束对玻姆鞘层判据的影响.  , 2003, 52(5): 1196-1202. doi: 10.7498/aps.52.1196
    [18] 罗绍凯, 傅景礼, 陈向炜. 转动系统相对论性Birkhoff动力学的基本理论.  , 2001, 50(3): 383-389. doi: 10.7498/aps.50.383
    [19] 方建会. 转动变质量系统的相对论性动力学方程和变分原理.  , 2000, 49(6): 1028-1030. doi: 10.7498/aps.49.1028
    [20] 胡海昌. 论弹性体力学与受范性体力学中的一般变分原理.  , 1954, 10(3): 259-290. doi: 10.7498/aps.10.259
计量
  • 文章访问数:  5968
  • PDF下载量:  551
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-19
  • 修回日期:  2013-10-18
  • 刊出日期:  2014-02-05

/

返回文章
返回
Baidu
map