-
针对目前无线传感网络节点对长寿命微能源的需求,提出了将同位素辐射能量转换为电能的静电式振动能量收集原理. 该原理利用同位素 63Niβ 辐射能实现平行板悬浮-质量块结构的自由阻尼振动,并通过可变电容电路实现充-放电振荡循环,从而实现电能的转换. 通过分析运动状态和能量转化过程,给出了结构的运动状态和能量输出方程,并使用Matlab/Simulink对输出特性进行了数值模拟和基于Ansys的结构优化设计. 根据仿真和优化的结构尺寸设计出了满足最大平均输出功率的微电子机械器件结构. 结果表明:所设计的结构在一阶固有频率为500 Hz,两极板间距离为75 μm,外接电阻为90 kΩ时平均输出功率最大为0.416 μW,转化效率8.25%.Wireless sensor nodes deployed at remote and inaccessible locations need long lifetime power sources to prevent cost prohibitive periodic replacement. In this work, we present a radioisotope 63Ni energy converter using radioisotope-powered electrostatic vibration-to-electricity conversion. Free damped vibration happening in a suspended parallel plate structure with a mass enables a variable capacitance, which can be used to realize the generation of electricity energy by an external circuit. The MATLAB/Simulink is used to simulate the vibration and output power, and the Ansys is used to optimize the structure design. The results show that the optimized design structure with a first-order natural frequency of 500 Hz, a plate gap of 75 μm, and an external resistance of 90 kΩ can generate an average output power of 0.416 μW and conversion efficiency of 8.25%.
-
Keywords:
- energy scavenging /
- isotopes 63Ni /
- electrostatic converter /
- vibration energy
[1] Fan K Q, Jia J Y, Zhu Y M, Zhang X Y 2011 Chin. Phys. B 20 043401
[2] He C, Fu X, Xu F, Wang J, Zhu K, Du C, Liu Y 2012 Chin. Phys. B 21 054207
[3] Lin H B, Cao M S, Yuan J, Wang D W, Zhao Q L, Wang F C 2008 Chin. Phys. B 17 4323
[4] Fan K Q, Ming Z F, Xu C H, Chao F B 2013 Chin. Phys. B 22 104502
[5] Yao S L, Song Z J, Wang X, San H S 2012 Appl. Radiat. Isot. 70 2388
[6] Duggirala R, Li H, Lal A 2009 Appl. Phys. Lett. 92 154104
[7] Cheng Z J, San H S, Chen X Y, Liu B, Feng Z H 2011 Chin. Phys. Lett. 28 078401
[8] Guo H, Yang H, Zhang Y 2007 20th IEEE International Conf. on Micro Electro Mechanical Systems (MEMS 2007) Kobe Japan, April 2–6, 2007 p867
[9] Gao H, Luo S Z, Zhang H M, Wang H Y 2012 Acta Phys. Sin. 61 176101 (in Chinese) [高晖, 罗顺忠, 张华明, 王和义 2012 61 176101]
[10] Lal A, Duggirala R, Hui L 2005 IEEE Pervas. Comput. 4 53
[11] Vijay D P, Desu S B 1993 J. Electrochem. Soc. 140 2640
[12] Roundy S, Wright P K, Rabaey J M 2003 Energy Scavenging for Wireless Sensor Networks (Boston M A: Kluwer Academic Publishers) p341
[13] Li Y F, Cheng Z J, San H S, Duo Y X 2010 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems Xiamen China, January 20–23, 2010 p78
-
[1] Fan K Q, Jia J Y, Zhu Y M, Zhang X Y 2011 Chin. Phys. B 20 043401
[2] He C, Fu X, Xu F, Wang J, Zhu K, Du C, Liu Y 2012 Chin. Phys. B 21 054207
[3] Lin H B, Cao M S, Yuan J, Wang D W, Zhao Q L, Wang F C 2008 Chin. Phys. B 17 4323
[4] Fan K Q, Ming Z F, Xu C H, Chao F B 2013 Chin. Phys. B 22 104502
[5] Yao S L, Song Z J, Wang X, San H S 2012 Appl. Radiat. Isot. 70 2388
[6] Duggirala R, Li H, Lal A 2009 Appl. Phys. Lett. 92 154104
[7] Cheng Z J, San H S, Chen X Y, Liu B, Feng Z H 2011 Chin. Phys. Lett. 28 078401
[8] Guo H, Yang H, Zhang Y 2007 20th IEEE International Conf. on Micro Electro Mechanical Systems (MEMS 2007) Kobe Japan, April 2–6, 2007 p867
[9] Gao H, Luo S Z, Zhang H M, Wang H Y 2012 Acta Phys. Sin. 61 176101 (in Chinese) [高晖, 罗顺忠, 张华明, 王和义 2012 61 176101]
[10] Lal A, Duggirala R, Hui L 2005 IEEE Pervas. Comput. 4 53
[11] Vijay D P, Desu S B 1993 J. Electrochem. Soc. 140 2640
[12] Roundy S, Wright P K, Rabaey J M 2003 Energy Scavenging for Wireless Sensor Networks (Boston M A: Kluwer Academic Publishers) p341
[13] Li Y F, Cheng Z J, San H S, Duo Y X 2010 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems Xiamen China, January 20–23, 2010 p78
计量
- 文章访问数: 7024
- PDF下载量: 366
- 被引次数: 0