搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

行波驱动下空泡在可压缩流场中的运动特性研究

姚熊亮 叶曦 张阿漫

引用本文:
Citation:

行波驱动下空泡在可压缩流场中的运动特性研究

姚熊亮, 叶曦, 张阿漫

Cavitation bubble in compressible fluid subjected to traveling wave

Yao Xiong-Liang, Ye Xi, Zhang A-Man
PDF
导出引用
  • 基于波动方程给出了计及可压缩性的边界积分方程. 以此为基础,求解行波驱动下非球状空泡的运动规律及其运动稳定性,并分析比较了行波频率、幅值以及初相位对空泡运动特性的影响. 研究结果表明:较高的行波频率与较低的幅值是空泡稳定运动的充分条件. 在一定幅值和频率的行波驱动下,空泡将在收缩阶段末期形成与行波传播方向相同的高速射流;计及流场可压缩性后,空泡脉动一次的时间减短,幅度减弱,射流顶点速度以及空泡内部压力的峰值随之减小;随着行波频率的增大或是幅值的降低,空泡脉动幅度与射流强度逐渐减弱;行波初相位的变化使空泡的初始运动状态随之改变,并影响非球状变形时的射流强度.
    With the wave equation, the boundary integral equation with considering compressibility is deduced. Then the motion characteristics and stability of cavitation bubble driven by traveling wave are obtained. The influences of wave frequency, amplitude and initial phase on the motion of cavitation bubble are analyzed. The results show that the motion stability is enhanced with the increase of drive frequency or the reduction of drive amplitude. With appropriate frequency and amplitude, the jet will be formed at the anaphase of contraction, and the direction is the same as that of the traveling wave. With the consideration of compressibility, the time for once pulsation of the cavitation bubble is shortened and the pulsation amplitude is reduced, correspondingly the jet tip velocity and the inner pressure also decrease. With the increase of drive frequency or the reduction of drive amplitude, the pulsation amplitude and intensity of jet decrease. The variation of initial phase will lead to the changes of the initial motion state of cavitation bubble and the jet strength.
    • 基金项目: 国家自然科学基金重点项目(批准号:50939002)、国家安全重大基础研究项目(批准号:613157)和国家自然科学基金优秀青年科学基金(批准号:51222904)资助的课题.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 50939002), the National Basic Research Program of China (Grant No. 613157), and the Excellent Young Scientist Foundation of the National Natural Science Foundation of China (Grant No. 51222904).
    [1]

    Gaitan D F, Crurn L A, Chruch C C, Roy R A 1992 J. Acoust. Soc. Am. 91 3166

    [2]

    Moss M C, Clarke D B, White J, Young D A 1996 Phys. Lett. A 211 69

    [3]

    Taleyarkhan R P, West C D, Cho J S, Lahey Jr R T 2002 Science 295 1868

    [4]

    Yuri T D, William B M, Kenneth S S 2000 Nature 407 877

    [5]

    Coussions C C, Farny C H, ter Haar G R, Roy R A 2007 Int. Hypertb. 23 105

    [6]

    Constantin C C, Ronald A R 2008 Annu. Rev. Fluid. Mech. 40 395

    [7]

    Laborde J L, Bouyer C, Caltagirone J P, Gerard A 1998 Ultrasonics 36 589

    [8]

    Lauterborn W, Kurz T, Gersler S D, Lindau O 2007 Ultrasonics Sonochemistry 14 484

    [9]

    Michael P B, Sascha H, Detlef L 2002 Rev. Modern Phys. 74 425

    [10]

    Brennen C E 1995 Cavitation and Bubble Dynamics (Oxford: Oxford University)

    [11]

    Chen W Z, Xie Z X 1996 Prog. Phys. 16 313 (in Chinese) [陈伟中, 谢志行1996 物理学进展 16 313]

    [12]

    Li Y T, Zhang J 2001 Physics 31 293 (in Chinese) [李玉同, 张杰2001 物理 31 293]

    [13]

    Qian M L, Cheng Q, Ge C Y 2002 Acta Acoustic 27 289 (in Chinese) [钱梦騄, 程茜, 葛曹燕2002 声学学报 27 289]

    [14]

    Wang C H, Cheng J C 2013 Chin. Phys. B 22 014304

    [15]

    Zhang A M, Yao X L 2008 Chin. Phys. B 17 927

    [16]

    Liu Y L, Zhang A M, Wang S P, Tian Z L 2012 Acta Phys. Sin. 61 224702 (in Chinese) [刘云龙, 张阿漫, 王诗平, 田昭丽 2012 61 224702]

    [17]

    Zhang A M, Yao X L 2008 Acta Phys. Sin. 57 339 (in Chinese) [张阿漫, 姚熊亮 2008 57 339]

    [18]

    Ye X, Yao X L, Zhang A M, Pang F Z 2013 Acta Phys. Sin. 62 114702 (in Chinese) [叶曦, 姚熊亮, 张阿漫, 庞福振2013 62 114702]

    [19]

    Wang Q X 2005 J. Comput. Phys. 210 183

    [20]

    Wang C W, Tang H Z, Liu T G 2008 J. Comput. Phys. 227 6385

    [21]

    Luz A B, Taehun L 2010 Computers Fluid 39 1191

    [22]

    Michael L C, Lindau O, Blake J R, Szeri A J 2007 Phys. Fluids 19 047101

    [23]

    Wang Q X, Blake J R 2010 J. Fluid Mech. 659 191

    [24]

    Herring C 1941 The Theory of the Pulsations of the Gas Bubbles Produced by an Underwater Explosion US Nat. Defence Res. Comm. Report. No. 236

    [25]

    Keller J B, Miksis M J 1980 J. Acoust. Soc. Am. 68 628

    [26]

    Prosperetti A, Lezzi A 1986 J. Fluid Mech. 168 457

    [27]

    Prosperetti A, Lezzi A 1986 J. Fluid Mech. 185 289

    [28]

    Wang Q X, Blake J R 2011 J. Fluid Mech. 679 559

    [29]

    Zhang A M, Wang S P, Wu G X 2013 Eng. Anal. Bound. Elem. 37 1179

    [30]

    Morse P M, Ingard K U 1987 Theoretical Acoustics (Princeton: Princeton University Press)

    [31]

    Wang C, Khoo B C 2004 J. Comput. Phys. 194 451

  • [1]

    Gaitan D F, Crurn L A, Chruch C C, Roy R A 1992 J. Acoust. Soc. Am. 91 3166

    [2]

    Moss M C, Clarke D B, White J, Young D A 1996 Phys. Lett. A 211 69

    [3]

    Taleyarkhan R P, West C D, Cho J S, Lahey Jr R T 2002 Science 295 1868

    [4]

    Yuri T D, William B M, Kenneth S S 2000 Nature 407 877

    [5]

    Coussions C C, Farny C H, ter Haar G R, Roy R A 2007 Int. Hypertb. 23 105

    [6]

    Constantin C C, Ronald A R 2008 Annu. Rev. Fluid. Mech. 40 395

    [7]

    Laborde J L, Bouyer C, Caltagirone J P, Gerard A 1998 Ultrasonics 36 589

    [8]

    Lauterborn W, Kurz T, Gersler S D, Lindau O 2007 Ultrasonics Sonochemistry 14 484

    [9]

    Michael P B, Sascha H, Detlef L 2002 Rev. Modern Phys. 74 425

    [10]

    Brennen C E 1995 Cavitation and Bubble Dynamics (Oxford: Oxford University)

    [11]

    Chen W Z, Xie Z X 1996 Prog. Phys. 16 313 (in Chinese) [陈伟中, 谢志行1996 物理学进展 16 313]

    [12]

    Li Y T, Zhang J 2001 Physics 31 293 (in Chinese) [李玉同, 张杰2001 物理 31 293]

    [13]

    Qian M L, Cheng Q, Ge C Y 2002 Acta Acoustic 27 289 (in Chinese) [钱梦騄, 程茜, 葛曹燕2002 声学学报 27 289]

    [14]

    Wang C H, Cheng J C 2013 Chin. Phys. B 22 014304

    [15]

    Zhang A M, Yao X L 2008 Chin. Phys. B 17 927

    [16]

    Liu Y L, Zhang A M, Wang S P, Tian Z L 2012 Acta Phys. Sin. 61 224702 (in Chinese) [刘云龙, 张阿漫, 王诗平, 田昭丽 2012 61 224702]

    [17]

    Zhang A M, Yao X L 2008 Acta Phys. Sin. 57 339 (in Chinese) [张阿漫, 姚熊亮 2008 57 339]

    [18]

    Ye X, Yao X L, Zhang A M, Pang F Z 2013 Acta Phys. Sin. 62 114702 (in Chinese) [叶曦, 姚熊亮, 张阿漫, 庞福振2013 62 114702]

    [19]

    Wang Q X 2005 J. Comput. Phys. 210 183

    [20]

    Wang C W, Tang H Z, Liu T G 2008 J. Comput. Phys. 227 6385

    [21]

    Luz A B, Taehun L 2010 Computers Fluid 39 1191

    [22]

    Michael L C, Lindau O, Blake J R, Szeri A J 2007 Phys. Fluids 19 047101

    [23]

    Wang Q X, Blake J R 2010 J. Fluid Mech. 659 191

    [24]

    Herring C 1941 The Theory of the Pulsations of the Gas Bubbles Produced by an Underwater Explosion US Nat. Defence Res. Comm. Report. No. 236

    [25]

    Keller J B, Miksis M J 1980 J. Acoust. Soc. Am. 68 628

    [26]

    Prosperetti A, Lezzi A 1986 J. Fluid Mech. 168 457

    [27]

    Prosperetti A, Lezzi A 1986 J. Fluid Mech. 185 289

    [28]

    Wang Q X, Blake J R 2011 J. Fluid Mech. 679 559

    [29]

    Zhang A M, Wang S P, Wu G X 2013 Eng. Anal. Bound. Elem. 37 1179

    [30]

    Morse P M, Ingard K U 1987 Theoretical Acoustics (Princeton: Princeton University Press)

    [31]

    Wang C, Khoo B C 2004 J. Comput. Phys. 194 451

  • [1] 郑雅欣, 那仁满都拉. 可压缩液体中气泡的声空化特性.  , 2022, 71(1): 014301. doi: 10.7498/aps.71.20211266
    [2] 郑雅欣, 那仁满都拉. 可压缩液体中气泡的声空化特性.  , 2021, (): . doi: 10.7498/aps.70.20211266
    [3] 张冬冬, 谭建国, 姚霄. 入流激励下可压缩剪切层中Kelvin-Helmholtz涡的响应特性.  , 2020, 69(2): 024701. doi: 10.7498/aps.69.20190681
    [4] 郑来运, 赵秉新, 杨建青. 弱Soret效应混合流体对流系统的分岔与非线性演化.  , 2020, 69(7): 074701. doi: 10.7498/aps.69.20191836
    [5] 李雪辰, 耿金伶, 贾鹏英, 吴凯玥, 贾博宇, 康鹏程. 液体电极上辉光放电丝的运动特性研究.  , 2018, 67(7): 075201. doi: 10.7498/aps.67.20172205
    [6] 魏梦举, 陈力, 伍涛, 张鸿雁, 崔海航. 微尺度空泡溃灭驱使微球运动的机理研究.  , 2017, 66(16): 164702. doi: 10.7498/aps.66.164702
    [7] 宁利中, 胡彪, 宁碧波, 田伟利. Poiseuille-Rayleigh-Bnard流动中对流斑图的分区和成长.  , 2016, 65(21): 214401. doi: 10.7498/aps.65.214401
    [8] 许永红, 石兰芳, 莫嘉琪. 强阻尼广义sine-Gordon方程特征问题的变分迭代法.  , 2015, 64(1): 010201. doi: 10.7498/aps.64.010201
    [9] 李小磊, 秦长剑, 张会臣. 激光空泡在文丘里管中运动的动力学特性.  , 2014, 63(5): 054707. doi: 10.7498/aps.63.054707
    [10] 欧阳成, 姚静荪, 石兰芳, 莫嘉琪. 一类尘埃等离子体孤波解.  , 2014, 63(11): 110203. doi: 10.7498/aps.63.110203
    [11] 石兰芳, 朱敏, 周先春, 汪维刚, 莫嘉琪. 一类非线性发展方程孤立子行波解.  , 2014, 63(13): 130201. doi: 10.7498/aps.63.130201
    [12] 赵龙, 杨继平, 郑艳红. 神经元网络螺旋波诱发机理研究.  , 2013, 62(2): 028701. doi: 10.7498/aps.62.028701
    [13] 叶曦, 姚熊亮, 张阿漫, 庞福振. 可压缩涡流场中空泡运动规律及声辐射特性研究.  , 2013, 62(11): 114702. doi: 10.7498/aps.62.114702
    [14] 董克攻, 谷渝秋, 朱斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 张保汉, 王晓方. 超强飞秒激光尾波场加速产生58 MeV准单能电子束实验.  , 2010, 59(12): 8733-8738. doi: 10.7498/aps.59.8733
    [15] 王雨虹, 王江安, 任席闯. 激光空泡特性实验与数值计算研究.  , 2009, 58(12): 8372-8378. doi: 10.7498/aps.58.8372
    [16] 赵瑞, 徐荣青, 梁忠诚, 陆建, 倪晓武. 含气量对黏性液体中空泡脉动特性的影响.  , 2009, 58(12): 8400-8405. doi: 10.7498/aps.58.8400
    [17] 宁利中, 齐昕, 余荔, 周洋. 混合流体Rayleigh-Benard行波对流中的缺陷结构.  , 2009, 58(4): 2528-2534. doi: 10.7498/aps.58.2528
    [18] 刘秀梅, 贺杰, 陆建, 倪晓武. 表面张力对固壁旁空泡运动特性影响的理论和实验研究.  , 2009, 58(6): 4020-4025. doi: 10.7498/aps.58.4020
    [19] 俞慧丹, 赵凯华. 模拟可压缩流体的格子Boltzmann模型.  , 1999, 48(8): 1470-1476. doi: 10.7498/aps.48.1470
    [20] 卢鹤绂. 可压缩流体之散逸函数.  , 1951, 8(2): 143-149. doi: 10.7498/aps.8.143
计量
  • 文章访问数:  6370
  • PDF下载量:  865
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-02
  • 修回日期:  2013-09-10
  • 刊出日期:  2013-12-05

/

返回文章
返回
Baidu
map