搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交通流量序列混沌特性分析及DFPSOVF预测模型

张玉梅 吴晓军 白树林

引用本文:
Citation:

交通流量序列混沌特性分析及DFPSOVF预测模型

张玉梅, 吴晓军, 白树林

Chaotic characteristic analysis for traffic flow series and DFPSOVF prediction model

Zhang Yu-Mei, Wu Xiao-Jun, Bai Shu-Lin
PDF
导出引用
  • 以实际采集的交通流量序列作为研究对象, 分别应用互信息法和虚假邻点法确定其延迟时间和最佳嵌入维数, 完成交通流量序列的相空间重构. 通过计算交通流量序列的饱和关联维数和最大Lyapunov指数判定其混沌特性. 以最小均方(LMS)算法为基础, 构建了一种基于Davidon-Fletcher-Powell方法的二阶Volterra模型(DFPSOVF), 其应用了一种可随输入信号变化而实时变化的基于后验误差假设的可变收敛因子技术. DFPSOVF模型避免了在Volterra模型中采用LMS自适应算法调整系数时参数选择不当引起的问题. 将DFPSOVF模型应用于具有混沌特性的短时交通流量预测, 结果表明: 当模型记忆长度与交通流量序列的嵌入维数选择一致时, 模型的预测精度较高, 可以满足交通诱导和交通控制的需要, 为智能交通控制提供了新方法、新思路及工程应用参考.
    Time delay and optimal embedding dimension for the real measurement traffic flow series, which are used by mutual information method and false nearest-neighbor method, respectively, are determined for phase space reconstruction of the traffic flow series. The saturation correlation dimension and the largest Lyapunov exponent for traffic flow series are calculated to estimate its chaotic characteristics. Based on the least mean square (LMS) algorithm, a novel second-order Volterra model using Davidon-Fletcher-Powell method (DFPSOVF) is constructed, in which a variable convergence factor based on a posteriori error assumption, characteristic of real-time change with the input signal, is applied. DFPSOVF model can avoid some problems caused by improper selection of parameters when using LMS adaptive algorithm for coefficient adjustment in Volterra model. DFPSOVF model can also be applied to short-term traffic flow prediction with chaotic characteristics. Results show that when model memory length is consistent with embedding dimension of traffic flow series, it obtains higher prediction accuracy, which can meet the needs for traffic guidance and traffic control, and can also provide a new method, a new idea and engineering application reference for intelligent traffic control.
    • 基金项目: 教育部新世纪优秀人才支持计划(批准号:NCET-110674);陕西省自然科学基础研究计划(批准号:2012JQ8051);榆林市2012年产学研合作项目(批准号:2012CXY3-38)和中央高校基本科研业务费专项基金(批准号:GK201102010)资助的课题.
    • Funds: Project supported by the Program for New Century Excellent Talents in University (Grant No. NCET-110674), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2012JQ8051), the Yulin City Cooperation of Industry, College and Institure in 2012 (Grant No. 2012CXY3-38), and the Foundation Research Funds for the Central Universities, China (Grant No. GK201102010).
    [1]

    Li T 2005 Phys. D 207 41

    [2]

    Low D J, Addison P S 1997 Proceeding of the 30th ISATA Conference Florence, Italy, June 16-19, 1997 p175

    [3]

    Tong M R, Xue H X, Lin L 2008 J. of Highway and Transportation Research and Development 25 124 (in Chinese) [童明荣, 薛恒新, 林琳 2008 公路交通科技 25 124]

    [4]

    Cirianni F, Leonardi G 2004 Air Pollution XII 14 559

    [5]

    Wang J, Guan W 2006 Proceeding of the 10th World Multi-Conference on Systemics, Cybernetics and Informatics, Orlando, FL, USA, July 16-19, 2006 p94

    [6]

    Smith B L, Williams B M, Oswald R K 2002 Transp. Res. C: Emerg. Technol. 10 303

    [7]

    Zhang J S, Xiao X C 2001 Acta Phys. Sin. 50 1248 (in Chinese) [张家树, 肖先赐 2001 50 1248]

    [8]

    Zhang J S, Xiao X C 2000 Acta Phys. Sin. 49 403 (in Chinese) [张家树, 肖先赐 2000 49 403]

    [9]

    Zhang J S, Xiao X C 2000 Acta Phys. Sin. 49 1221 (in Chinese) [张家树, 肖先赐 2000 49 1221]

    [10]

    Wei B L, Luo X S, Wang B H, Quan H J, Guo W, Fu J J 2002 Acta Phys. Sin. 51 2205 (in Chinese) [韦保林, 罗晓曙, 汪秉宏, 全宏俊, 郭维, 傅金阶 2002 51 2205]

    [11]

    Du J, Cao Y J, Liu Z J, Xu L Z, Jiang Q Y, Guo C X, Lu J G 2009 Acta Phys. Sin. 58 5997 (in Chinese) [杜杰, 曹一家, 刘志坚, 徐立中, 江全元, 郭创新, 陆金桂 2009 58 5997]

    [12]

    Sigrist Z, Grivel E, Alcoverro B 2012 Signal Process. 92 1010

    [13]

    Mathews V J 1991 IEEE Signal Process. Mag. 8 10

    [14]

    Zhang H J, Han C Z 2004 J. Xian Jiaotong Univ. 38 583 (in Chinese) [张华君, 韩崇昭 2004 西安交通大学学报 38 583]

    [15]

    Takens F 1981 Lecture Notes in Mathematics 898 361

    [16]

    Wang H Y, Lu S 2006 Nonlinear Time Series Analysis and Its Application (Beijing: Science Press) p33-40 (in Chinese) [王海燕, 卢山 2006 非线性时间序列分析及其应用(北京: 科学出版社)第33-40页]

    [17]

    Henry D, Abarbanel N M, Rabinovich M I, Evren T 2001 Phys. Lett. A 281 368

    [18]

    Kennel M B, Brown R, Abarbanel H D I 1992 Phys. Rev. A 45 3403

    [19]

    Grassberger P, Procaccia I 1983 Phys. D 9 189

    [20]

    Rosenstein M T, Collins J J, De Iuca C J 1993 Phys. D 65 117

    [21]

    De Campos M L R, Antoniou A 1997 IEEE Trans. Circuits Syst. 44 924

  • [1]

    Li T 2005 Phys. D 207 41

    [2]

    Low D J, Addison P S 1997 Proceeding of the 30th ISATA Conference Florence, Italy, June 16-19, 1997 p175

    [3]

    Tong M R, Xue H X, Lin L 2008 J. of Highway and Transportation Research and Development 25 124 (in Chinese) [童明荣, 薛恒新, 林琳 2008 公路交通科技 25 124]

    [4]

    Cirianni F, Leonardi G 2004 Air Pollution XII 14 559

    [5]

    Wang J, Guan W 2006 Proceeding of the 10th World Multi-Conference on Systemics, Cybernetics and Informatics, Orlando, FL, USA, July 16-19, 2006 p94

    [6]

    Smith B L, Williams B M, Oswald R K 2002 Transp. Res. C: Emerg. Technol. 10 303

    [7]

    Zhang J S, Xiao X C 2001 Acta Phys. Sin. 50 1248 (in Chinese) [张家树, 肖先赐 2001 50 1248]

    [8]

    Zhang J S, Xiao X C 2000 Acta Phys. Sin. 49 403 (in Chinese) [张家树, 肖先赐 2000 49 403]

    [9]

    Zhang J S, Xiao X C 2000 Acta Phys. Sin. 49 1221 (in Chinese) [张家树, 肖先赐 2000 49 1221]

    [10]

    Wei B L, Luo X S, Wang B H, Quan H J, Guo W, Fu J J 2002 Acta Phys. Sin. 51 2205 (in Chinese) [韦保林, 罗晓曙, 汪秉宏, 全宏俊, 郭维, 傅金阶 2002 51 2205]

    [11]

    Du J, Cao Y J, Liu Z J, Xu L Z, Jiang Q Y, Guo C X, Lu J G 2009 Acta Phys. Sin. 58 5997 (in Chinese) [杜杰, 曹一家, 刘志坚, 徐立中, 江全元, 郭创新, 陆金桂 2009 58 5997]

    [12]

    Sigrist Z, Grivel E, Alcoverro B 2012 Signal Process. 92 1010

    [13]

    Mathews V J 1991 IEEE Signal Process. Mag. 8 10

    [14]

    Zhang H J, Han C Z 2004 J. Xian Jiaotong Univ. 38 583 (in Chinese) [张华君, 韩崇昭 2004 西安交通大学学报 38 583]

    [15]

    Takens F 1981 Lecture Notes in Mathematics 898 361

    [16]

    Wang H Y, Lu S 2006 Nonlinear Time Series Analysis and Its Application (Beijing: Science Press) p33-40 (in Chinese) [王海燕, 卢山 2006 非线性时间序列分析及其应用(北京: 科学出版社)第33-40页]

    [17]

    Henry D, Abarbanel N M, Rabinovich M I, Evren T 2001 Phys. Lett. A 281 368

    [18]

    Kennel M B, Brown R, Abarbanel H D I 1992 Phys. Rev. A 45 3403

    [19]

    Grassberger P, Procaccia I 1983 Phys. D 9 189

    [20]

    Rosenstein M T, Collins J J, De Iuca C J 1993 Phys. D 65 117

    [21]

    De Campos M L R, Antoniou A 1997 IEEE Trans. Circuits Syst. 44 924

  • [1] 刘奇, 李璞, 开超, 胡春强, 蔡强, 张建国, 徐兵杰. 基于时延光子储备池计算的混沌激光短期预测.  , 2021, 70(15): 154209. doi: 10.7498/aps.70.20210355
    [2] 梅英, 谭冠政, 刘振焘, 武鹤. 基于大脑情感学习模型和自适应遗传算法的混沌时间序列预测.  , 2018, 67(8): 080502. doi: 10.7498/aps.67.20172104
    [3] 王新迎, 韩敏. 多元混沌时间序列的多核极端学习机建模预测.  , 2015, 64(7): 070504. doi: 10.7498/aps.64.070504
    [4] 田中大, 李树江, 王艳红, 高宪文. 短期风速时间序列混沌特性分析及预测.  , 2015, 64(3): 030506. doi: 10.7498/aps.64.030506
    [5] 刘擎超, 陆建, 陈淑燕. 基于能力区域的交通状态预测方法.  , 2014, 63(14): 140504. doi: 10.7498/aps.63.140504
    [6] 张洪宾, 孙小端, 贺玉龙. 短时交通流复杂动力学特性分析及预测.  , 2014, 63(4): 040505. doi: 10.7498/aps.63.040505
    [7] 马庆禄, 刘卫宁, 孙棣华. 道路交通流状态的多参数融合预测方法.  , 2012, 61(16): 169501. doi: 10.7498/aps.61.169501
    [8] 张文专, 龙文, 焦建军. 基于差分进化算法的混沌时间序列预测模型参数组合优化.  , 2012, 61(22): 220506. doi: 10.7498/aps.61.220506
    [9] 李军, 张友鹏. 基于高斯过程的混沌时间序列单步与多步预测.  , 2011, 60(7): 070513. doi: 10.7498/aps.60.070513
    [10] 李鹤, 杨周, 张义民, 闻邦椿. 基于径向基神经网络预测的混沌时间序列嵌入维数估计方法.  , 2011, 60(7): 070512. doi: 10.7498/aps.60.070512
    [11] 张春涛, 马千里, 彭宏. 基于信息熵优化相空间重构参数的混沌时间序列预测.  , 2010, 59(11): 7623-7629. doi: 10.7498/aps.59.7623
    [12] 马千里, 郑启伦, 彭宏, 覃姜维. 基于模糊边界模块化神经网络的混沌时间序列预测.  , 2009, 58(3): 1410-1419. doi: 10.7498/aps.58.1410
    [13] 毛剑琴, 丁海山, 姚健. 基于模糊树模型的混沌时间序列预测.  , 2009, 58(4): 2220-2230. doi: 10.7498/aps.58.2220
    [14] 杨永锋, 任兴民, 秦卫阳, 吴亚锋, 支希哲. 基于EMD方法的混沌时间序列预测.  , 2008, 57(10): 6139-6144. doi: 10.7498/aps.57.6139
    [15] 王永生, 孙 瑾, 王昌金, 范洪达. 变参数混沌时间序列的神经网络预测研究.  , 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [16] 张军峰, 胡寿松. 基于一种新型聚类算法的RBF神经网络混沌时间序列预测.  , 2007, 56(2): 713-719. doi: 10.7498/aps.56.713
    [17] 贺 涛, 周正欧. 基于分形自仿射的混沌时间序列预测.  , 2007, 56(2): 693-700. doi: 10.7498/aps.56.693
    [18] 闫 华, 魏 平, 肖先赐. 基于Bernstein多项式的自适应混沌时间序列预测算法.  , 2007, 56(9): 5111-5118. doi: 10.7498/aps.56.5111
    [19] 叶美盈, 汪晓东, 张浩然. 基于在线最小二乘支持向量机回归的混沌时间序列预测.  , 2005, 54(6): 2568-2573. doi: 10.7498/aps.54.2568
    [20] 李 军, 刘君华. 一种新型广义RBF神经网络在混沌时间序列预测中的研究.  , 2005, 54(10): 4569-4577. doi: 10.7498/aps.54.4569
计量
  • 文章访问数:  6559
  • PDF下载量:  851
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-16
  • 修回日期:  2013-06-20
  • 刊出日期:  2013-10-05

/

返回文章
返回
Baidu
map