搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短时交通流复杂动力学特性分析及预测

张洪宾 孙小端 贺玉龙

引用本文:
Citation:

短时交通流复杂动力学特性分析及预测

张洪宾, 孙小端, 贺玉龙

Analysis and prediction of complex dynamical characteristics of short-term traffic flow

Zhang Hong-Bin, Sun Xiao-Duan, He Yu-Long
PDF
导出引用
  • 为揭示短时交通流的内在动态特性,利用非线性方法对交通流混沌特性进行识别,为短时交通流的预测提供基础. 基于混沌理论对交通流时间序列进行相空间重构,利用C-C算法计算时间延迟和嵌入维数,采用Grassberger-Procaccia算法计算吸引子关联维数,通过改进小数据量法计算最大Lyapunov指数来判别交通流时间序列的混沌特性. 针对局域自适应预测方法在交通流多步预测中预测器系数无法调节的问题,提出了交通流多步自适应预测方法. 通过实测数据计算,结果表明: 2,4和5min三种统计尺度的交通流时间序列均具有混沌特性;改进的小数据量法能够准确地计算出最大Lyapunov指数;构建的交通流多步自适应预测模型能够有效地预测交通流量的变化. 为智能交通系统诱导和控制提供了依据.
    In order to reveal the internal dynamic property of short-term traffic flow, the nonlinear analysis method is used to identify the chaotic property of traffic flow which is the basis for the prediction of the traffic flow time series. Traffic flow time series is reconstructed in phase-space based on chaos theory. The embedding dimension and delay time are first calculated via the C-C method. The correlative dimension of attractor is then calculated with the Grassberger-Procaccia method. The largest Lyapunov exponent of traffic flow set is calculated on the basis of the improved small data set method to verify the presence of the chaos in traffic flow time series. A novel multi-step adaptive prediction method is proposed to solve the problem of adjusting the filter parameters of the chaos local adaptive prediction method during traffic flow multi-step prediction. The traffic flow time series are found to have chaotic properties in different statistical scales of 2, 4, and 5 min and show that the improved small data set method can accurately evaluate the chaotic property for traffic flow time series, and that the multi-step adaptive prediction method is capable of effectively predicting its fluctuation, which provides a useful reference for traffic guidance and control.
    • 基金项目: 国家重点基础研究发展计划(批准号:2012CB723303)和国家自然科学基金青年科学基金(批准号:51308058)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB723303) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51308058).
    [1]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [2]

    Barana G, Tsuda I 1993 Phys. Lett. A 175 421

    [3]

    Briggs K 1990 Phys. Lett. A 151 27

    [4]

    Rosenstein M T, Collins J, Deluca C J 1993 Physica D 65 117

    [5]

    Chen Z, Liang P 2000 J. Guizhou Normal Univ. (Natural Science) 18 58(in Chinese) [陈琢, 梁蓓 2000 贵阳师范大学学报 (自然科学版) 18 58]

    [6]

    Zhang Y M, Qu S R, Wen K G 2009 China Civil Engineer. J. 42 119 (in Chinese) [张玉梅, 曲仕茹, 温凯歌 2009 土木工程学报 42 119]

    [7]

    Lu Y, Chen Y H, He G G 2007 Systems Engineer. Theor. Pract. 27 85 (in Chinese) [卢宇, 陈宇红, 贺国光 2007 系统工程理论与实践 27 85]

    [8]

    Ding T, Zhou H C 2004 Sys. Engn. Electron 26 338 (in Chinese) [丁涛, 周惠成 2004 系统工程与电子技术 26 338]

    [9]

    Zhang J S, Xiao X C 2000 Acta Phys. Sin. 49 403 (in Chinese) [张家树, 肖先赐 2000 49 403]

    [10]

    Gan J C, Xiao X C 2003 Acta Phys. Sin. 52 1096 (in Chinese) [甘建超, 肖先赐 2003 52 1096]

    [11]

    Gan J C, Xiao X C 2003 Acta Phys. Sin. 52 2996 (in Chinese) [甘建超, 肖先赐 2003 52 2996]

    [12]

    Zhang J S, Dang J L, Li H C 2007 Acta Phys. Sin. 56 67 (in Chinese) [张家树, 党建亮, 李恒超 2007 56 67]

    [13]

    Zhang Y M, Qu S R 2010 Appl. Res. Comput. 27 4486 in Chinese) [张玉梅, 曲仕茹 2010 计算机应用研究 27 4486]

    [14]

    Takens F 1981 Dynamical System and Turbulence, Lecture Notes in Mathematics (Vol. 898) (Berlin: Springer-Verlag) p230

    [15]

    Dong L, Gao S, Liao X Z 2007 Acta Energiae Solaris Sin. 28 1290 (in Chinese) [冬雷, 高爽, 廖晓钟 2007 太阳能学报 28 1290]

    [16]

    Kim H S, Eykholt R, Salas J D 1999 Physica D 127 48

    [17]

    Brock W A, Hsieh D, Lebaron A B 1991 Nonlinear Dynamics, Chaos and Instability: Statistical Theory and Economic Evidence (Cambridge: MTT Press) p217

    [18]

    Grassberger P, Procaccia I 1983 Physica D 9 1898

    [19]

    L J H, Lu J A, Chen S H 2002 Chaotic Time Series Analysis and Applications (Wuhan: Wuhan University Press) p116 (in Chinese) [吕金虎, 陆君安, 陈士华 2002 混沌时间序列分析及其应用 (武汉: 武汉大学出版社) 第116页]

    [20]

    Meng Q F, Zhang Q, Mu W Y 2006 Acta Phys. Sin. 55 1666 (in Chinese) [孟庆芳, 张强, 牟文英 2006 55 1666]

  • [1]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [2]

    Barana G, Tsuda I 1993 Phys. Lett. A 175 421

    [3]

    Briggs K 1990 Phys. Lett. A 151 27

    [4]

    Rosenstein M T, Collins J, Deluca C J 1993 Physica D 65 117

    [5]

    Chen Z, Liang P 2000 J. Guizhou Normal Univ. (Natural Science) 18 58(in Chinese) [陈琢, 梁蓓 2000 贵阳师范大学学报 (自然科学版) 18 58]

    [6]

    Zhang Y M, Qu S R, Wen K G 2009 China Civil Engineer. J. 42 119 (in Chinese) [张玉梅, 曲仕茹, 温凯歌 2009 土木工程学报 42 119]

    [7]

    Lu Y, Chen Y H, He G G 2007 Systems Engineer. Theor. Pract. 27 85 (in Chinese) [卢宇, 陈宇红, 贺国光 2007 系统工程理论与实践 27 85]

    [8]

    Ding T, Zhou H C 2004 Sys. Engn. Electron 26 338 (in Chinese) [丁涛, 周惠成 2004 系统工程与电子技术 26 338]

    [9]

    Zhang J S, Xiao X C 2000 Acta Phys. Sin. 49 403 (in Chinese) [张家树, 肖先赐 2000 49 403]

    [10]

    Gan J C, Xiao X C 2003 Acta Phys. Sin. 52 1096 (in Chinese) [甘建超, 肖先赐 2003 52 1096]

    [11]

    Gan J C, Xiao X C 2003 Acta Phys. Sin. 52 2996 (in Chinese) [甘建超, 肖先赐 2003 52 2996]

    [12]

    Zhang J S, Dang J L, Li H C 2007 Acta Phys. Sin. 56 67 (in Chinese) [张家树, 党建亮, 李恒超 2007 56 67]

    [13]

    Zhang Y M, Qu S R 2010 Appl. Res. Comput. 27 4486 in Chinese) [张玉梅, 曲仕茹 2010 计算机应用研究 27 4486]

    [14]

    Takens F 1981 Dynamical System and Turbulence, Lecture Notes in Mathematics (Vol. 898) (Berlin: Springer-Verlag) p230

    [15]

    Dong L, Gao S, Liao X Z 2007 Acta Energiae Solaris Sin. 28 1290 (in Chinese) [冬雷, 高爽, 廖晓钟 2007 太阳能学报 28 1290]

    [16]

    Kim H S, Eykholt R, Salas J D 1999 Physica D 127 48

    [17]

    Brock W A, Hsieh D, Lebaron A B 1991 Nonlinear Dynamics, Chaos and Instability: Statistical Theory and Economic Evidence (Cambridge: MTT Press) p217

    [18]

    Grassberger P, Procaccia I 1983 Physica D 9 1898

    [19]

    L J H, Lu J A, Chen S H 2002 Chaotic Time Series Analysis and Applications (Wuhan: Wuhan University Press) p116 (in Chinese) [吕金虎, 陆君安, 陈士华 2002 混沌时间序列分析及其应用 (武汉: 武汉大学出版社) 第116页]

    [20]

    Meng Q F, Zhang Q, Mu W Y 2006 Acta Phys. Sin. 55 1666 (in Chinese) [孟庆芳, 张强, 牟文英 2006 55 1666]

  • [1] 周双, 冯勇, 吴文渊, 汪维华. 一种基于模糊C均值聚类小数据量计算最大Lyapunov指数的新方法.  , 2016, 65(2): 020502. doi: 10.7498/aps.65.020502
    [2] 张文超, 谭思超, 高璞珍. 基于Lyapunov指数的摇摆条件下自然循环流动不稳定性混沌预测.  , 2013, 62(6): 060502. doi: 10.7498/aps.62.060502
    [3] 张玉梅, 吴晓军, 白树林. 交通流量序列混沌特性分析及DFPSOVF预测模型.  , 2013, 62(19): 190509. doi: 10.7498/aps.62.190509
    [4] 刘诗序, 关宏志, 严海. 网络交通流动态演化的混沌现象及其控制.  , 2012, 61(9): 090506. doi: 10.7498/aps.61.090506
    [5] 姚天亮, 刘海峰, 许建良, 李伟锋. 空气湍射流速度时间序列的最大Lyapunov指数以及湍流脉动.  , 2012, 61(23): 234704. doi: 10.7498/aps.61.234704
    [6] 姚天亮, 刘海峰, 许建良, 李伟锋. 基于最大Lyapunov指数不变性的混沌时间序列噪声水平估计.  , 2012, 61(6): 060503. doi: 10.7498/aps.61.060503
    [7] 王亚奇, 蒋国平. 考虑网络流量的无标度网络病毒免疫策略研究.  , 2011, 60(6): 060202. doi: 10.7498/aps.60.060202
    [8] 于思瑶, 郭树旭, 郜峰利. 半导体激光器低频噪声的Lyapunov指数计算和混沌状态判定.  , 2009, 58(8): 5214-5217. doi: 10.7498/aps.58.5214
    [9] 王兴元, 贺毅杰. 分数阶统一混沌系统的投影同步.  , 2008, 57(3): 1485-1492. doi: 10.7498/aps.57.1485
    [10] 牛玉俊, 徐 伟, 戎海武, 王 亮, 冯进钤. 非光滑周期扰动与有界噪声联合作用下受迫Duffing系统的混沌预测.  , 2008, 57(12): 7535-7540. doi: 10.7498/aps.57.7535
    [11] 闫 华, 魏 平, 肖先赐. 基于Bernstein多项式的自适应混沌时间序列预测算法.  , 2007, 56(9): 5111-5118. doi: 10.7498/aps.56.5111
    [12] 李 爽, 徐 伟, 李瑞红. 利用随机相位实现Duffing系统的混沌控制.  , 2006, 55(3): 1049-1054. doi: 10.7498/aps.55.1049
    [13] 杨晓丽, 徐 伟, 孙中奎. 谐和激励与有界噪声作用下具有同宿和异宿轨道的Duffing振子的混沌运动.  , 2006, 55(4): 1678-1686. doi: 10.7498/aps.55.1678
    [14] 陶朝海, 陆君安. 混沌系统的速度反馈同步.  , 2005, 54(11): 5058-5061. doi: 10.7498/aps.54.5058
    [15] 韦保林, 罗晓曙, 汪秉宏, 全宏俊, 郭维, 傅金阶. 一种基于三阶Volterra滤波器的混沌时间序列自适应预测方法.  , 2002, 51(10): 2205-2210. doi: 10.7498/aps.51.2205
    [16] 陶朝海, 陆君安, 吕金虎. 统一混沌系统的反馈同步.  , 2002, 51(7): 1497-1501. doi: 10.7498/aps.51.1497
    [17] 张家树, 肖先赐. 用于混沌时间序列自适应预测的一种少参数二阶Volterra滤波器.  , 2001, 50(7): 1248-1254. doi: 10.7498/aps.50.1248
    [18] 张家树, 肖先赐. 连续混沌系统的非线性自适应预测跟踪控制.  , 2001, 50(11): 2092-2096. doi: 10.7498/aps.50.2092
    [19] 张家树, 肖先赐. 用一种少参数非线性自适应滤波器自适应预测低维混沌时间序列.  , 2000, 49(12): 2333-2339. doi: 10.7498/aps.49.2333
    [20] 张家树, 肖先赐. 混沌时间序列的自适应高阶非线性滤波预测.  , 2000, 49(7): 1221-1227. doi: 10.7498/aps.49.1221
计量
  • 文章访问数:  7080
  • PDF下载量:  827
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-29
  • 修回日期:  2013-11-13
  • 刊出日期:  2014-02-05

/

返回文章
返回
Baidu
map