搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

B/N掺杂对于石墨烯纳米片电子输运的影响

邓小清 杨昌虎 张华林

引用本文:
Citation:

B/N掺杂对于石墨烯纳米片电子输运的影响

邓小清, 杨昌虎, 张华林

The electronic transport properties affected by B/N doping in graphene-based molecular devices

Deng Xiao-Qing, Yang Chang-Hu, Zhang Hua-Lin
PDF
导出引用
  • 选用锯齿(zigzag)型石墨烯纳米片为研究对象, Au作为电极, 分子平面与Au的(111)面垂直, 并通过末端S原子化学吸附于金属表面, 构成两种分子器件: 一种是在纳米片的边缘掺杂N(B)原子, 发现电流-电压具有非线性行为, 但是整流系数较小, 特别是掺杂较多时, 整流具有不稳定性; 另一种是用烷链把两个石墨烯片连接, 在烷链附近和石墨烯片的边缘进行N(B)掺杂, 发现在烷链附近掺杂具有较大的整流, 但是掺杂的原子个数和位置会影响整流性能. 研究表明: 整流主要为正负电压下分子能级的移动方向和空间轨道分布不同导致. 部分体系中的负微分电阻现象主要由于偏压导致能级移动和透射峰形态的改变, 并且在某些偏压下主要透射通道被抑制而引起.
    The electron transport properties of the system consisting of the zigzag graphene nanoflake doped with nitrogen and boron atoms connected to two Au electrodes through S-Au bonds are investigated theoretically. The results show that a nanoflake doped with nitrogen and boron atoms at edges has poor rectifying performance. While the system consisting of two pieces of graphene flakes doped by boron and nitrogen atoms, respectively, and linked with an alkane chain, shows good performance. And the significant effects of the doped sites on the current-voltage characteristics are observed. The mechanisms for these phenomena are explained by the different shifts of transmission spectra, the different spatial distributions of the molecular projected self-consistent Hamiltonian eigenstates. The negative differential resistance behavior results from the biase induced shifts of the energy level and change of the resonance transmission spectra, and the suppression of the relevant channels at some bias voltages.
    • 基金项目: 国家自然科学基金(批准号:61071015,61101009,61201080);湖南省教育厅科技项目(批准号:11B008,12A001);湖南省科技厅项目(批准号:2011FJ3089,2012FJ4254);湖南省重点学科建设项目和湖南省高校科技创新团队支持计划资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61071015, 61101009, 61201080), the Scientific Research Fund of Hunan Provincial Education Department, China (Grant Nos. 11B008, 12A001), the Scientific Research Fund of Hunan Provincial Science and Technology Agency, China (Grant Nos. 2011FJ3089, 2012FJ4254), the Construct Program of the Key Discipline in Hunan Province, Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, China.
    [1]

    Zhang Z H, Peng J, Zhang H 2001 Appl. Phys. Lett. 79 3515

    [2]

    Zhang Z H, Peng J, Huang X 2002 Phys. Rev. B 66 085405

    [3]

    Zhang Z H, Yuan J, Qiu M 2006 J. Appl. Phys. 99 104311

    [4]

    Zhang Z H, Yang Z, Wang X, Yuan J, Zhang H, Qiu M, Peng J 2005 J. Phys.: Condens. Matter 17 4111

    [5]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [6]

    Zeng M, Shen L, Yang M, Zhang C, Feng Y 2011 Appl. Phys. Lett. 98 053101

    [7]

    Masum Habib K M, Zahid F, Lake R K 2011 Appl. Phys. Lett. 98 192112

    [8]

    Kang J, Wu F, Li J 2011 Appl. Phys. Lett. 98 083109

    [9]

    Soudi A, Aivazian G, Shi S F, Xu X D, Gu Y 2012 Appl. Phys. Lett. 100 033115

    [10]

    Zeng M, Huang W, Liang G 2013 Nanoscale 5 200

    [11]

    Zheng X H, Wang X L, Huang L F, Hao H, Lan J, Zeng Z 2012 Phys. Rev. B 86 081408

    [12]

    Zheng X H, Wang X L, Abtew T A, Zeng Z 2010 J. Phys. Chem. C 114 4190

    [13]

    Zheng X H, Song L L, Wang R N, Hao H, Guo L J, Zeng Z 2010 Appl. Phys. Lett. 97 153129

    [14]

    An Y P, Yang Z Q 2011 Appl. Phys. Lett. 99 192102

    [15]

    Jin F, Zhang Z H, Wang C Z, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 036103 (in Chinese) [金峰, 张振华, 王成志, 邓小清, 范志强 2013 62 036103]

    [16]

    Ouyang F P, Xu H, Lin F 2009 Acta Phys. Sin. 58 4132 (in Chinese) [欧阳方平, 徐慧, 林峰 2009 58 4132]

    [17]

    Xu J M, Hu X H, Sun L T 2012 Acta Phys. Sin. 61 027104 (in Chinese) [许俊敏, 胡小会, 孙利涛2012 61 027104]

    [18]

    Zheng J M, Guo P, Ren Z, Jiang Z, Bai J, Zhang Z 2012 Appl. Phys. Lett. 101 083101

    [19]

    Yao Y X, Wang C Z, Zhang G P, Ji M, Ho K M 2009 J. Phys.: Condens. Matter 21 235501

    [20]

    Son Y, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [21]

    Zeng J, Chen K Q, He J, Zhang X J, Hu W P 2011 Organic Electronics 12 1606

    [22]

    Zeng J, Chen K Q, He J, Fan Z Q, Zhang X J 2011 J. Appl. Phys. 109 124502

    [23]

    Lin Q, Chen Y H, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 (in Chinese) [林琦, 陈余行, 吴建宝, 孔宗敏2011 60 097103]

    [24]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Qiu M 2012 Appl. Phys. Lett. 100 063107

    [25]

    Deng X Q, Tang G P, Guo C 2012 Phys. Lett. A 376 1839

    [26]

    Wei D C, Liu Y Q, Wang Y, Zhang H L, Huang L P, Yu G 2009 Nano Lett. 9 1752

    [27]

    Guo B D, Liu Q, Chen E D, Zhu H W, Fang L, Gong J R 2010 Nano Lett. 10 3079

    [28]

    Tworzydlo J, Trauzettel B, Titov M, Rycerz A, Beenakker C W J 2006 Phys. Rev. Lett. 96 246802

    [29]

    Schomerus H 2007 Phys. Rev. B 76 045433

    [30]

    Zhang G P, Qin Z J 2011 Chem. Phys. Lett. 516 225

    [31]

    Hu S J, Du W, Zhang G P, Gao M, Lu Z Y, Wang X Q 2012 Chin. Phys. Lett. 29 057201

    [32]

    Landauer R 1970 Philos. Mag. 21 863

    [33]

    Bttiker M 1986 Phys. Rev. Lett. 57 1761

    [34]

    Zhang Z H, Qiu M, Deng X Q, Ding K H, Zhang H 2009 J. Chem. Phys. 130 184703

    [35]

    Zhang Z H, Deng X Q, Tan X Q, Qiu M, Pan J B 2010 Appl. Phys. Lett. 97 183105

    [36]

    Zhang Z H, Guo C, Kwong G, Deng X Q 2013 Carbon 51 313

  • [1]

    Zhang Z H, Peng J, Zhang H 2001 Appl. Phys. Lett. 79 3515

    [2]

    Zhang Z H, Peng J, Huang X 2002 Phys. Rev. B 66 085405

    [3]

    Zhang Z H, Yuan J, Qiu M 2006 J. Appl. Phys. 99 104311

    [4]

    Zhang Z H, Yang Z, Wang X, Yuan J, Zhang H, Qiu M, Peng J 2005 J. Phys.: Condens. Matter 17 4111

    [5]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [6]

    Zeng M, Shen L, Yang M, Zhang C, Feng Y 2011 Appl. Phys. Lett. 98 053101

    [7]

    Masum Habib K M, Zahid F, Lake R K 2011 Appl. Phys. Lett. 98 192112

    [8]

    Kang J, Wu F, Li J 2011 Appl. Phys. Lett. 98 083109

    [9]

    Soudi A, Aivazian G, Shi S F, Xu X D, Gu Y 2012 Appl. Phys. Lett. 100 033115

    [10]

    Zeng M, Huang W, Liang G 2013 Nanoscale 5 200

    [11]

    Zheng X H, Wang X L, Huang L F, Hao H, Lan J, Zeng Z 2012 Phys. Rev. B 86 081408

    [12]

    Zheng X H, Wang X L, Abtew T A, Zeng Z 2010 J. Phys. Chem. C 114 4190

    [13]

    Zheng X H, Song L L, Wang R N, Hao H, Guo L J, Zeng Z 2010 Appl. Phys. Lett. 97 153129

    [14]

    An Y P, Yang Z Q 2011 Appl. Phys. Lett. 99 192102

    [15]

    Jin F, Zhang Z H, Wang C Z, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 036103 (in Chinese) [金峰, 张振华, 王成志, 邓小清, 范志强 2013 62 036103]

    [16]

    Ouyang F P, Xu H, Lin F 2009 Acta Phys. Sin. 58 4132 (in Chinese) [欧阳方平, 徐慧, 林峰 2009 58 4132]

    [17]

    Xu J M, Hu X H, Sun L T 2012 Acta Phys. Sin. 61 027104 (in Chinese) [许俊敏, 胡小会, 孙利涛2012 61 027104]

    [18]

    Zheng J M, Guo P, Ren Z, Jiang Z, Bai J, Zhang Z 2012 Appl. Phys. Lett. 101 083101

    [19]

    Yao Y X, Wang C Z, Zhang G P, Ji M, Ho K M 2009 J. Phys.: Condens. Matter 21 235501

    [20]

    Son Y, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [21]

    Zeng J, Chen K Q, He J, Zhang X J, Hu W P 2011 Organic Electronics 12 1606

    [22]

    Zeng J, Chen K Q, He J, Fan Z Q, Zhang X J 2011 J. Appl. Phys. 109 124502

    [23]

    Lin Q, Chen Y H, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 (in Chinese) [林琦, 陈余行, 吴建宝, 孔宗敏2011 60 097103]

    [24]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Qiu M 2012 Appl. Phys. Lett. 100 063107

    [25]

    Deng X Q, Tang G P, Guo C 2012 Phys. Lett. A 376 1839

    [26]

    Wei D C, Liu Y Q, Wang Y, Zhang H L, Huang L P, Yu G 2009 Nano Lett. 9 1752

    [27]

    Guo B D, Liu Q, Chen E D, Zhu H W, Fang L, Gong J R 2010 Nano Lett. 10 3079

    [28]

    Tworzydlo J, Trauzettel B, Titov M, Rycerz A, Beenakker C W J 2006 Phys. Rev. Lett. 96 246802

    [29]

    Schomerus H 2007 Phys. Rev. B 76 045433

    [30]

    Zhang G P, Qin Z J 2011 Chem. Phys. Lett. 516 225

    [31]

    Hu S J, Du W, Zhang G P, Gao M, Lu Z Y, Wang X Q 2012 Chin. Phys. Lett. 29 057201

    [32]

    Landauer R 1970 Philos. Mag. 21 863

    [33]

    Bttiker M 1986 Phys. Rev. Lett. 57 1761

    [34]

    Zhang Z H, Qiu M, Deng X Q, Ding K H, Zhang H 2009 J. Chem. Phys. 130 184703

    [35]

    Zhang Z H, Deng X Q, Tan X Q, Qiu M, Pan J B 2010 Appl. Phys. Lett. 97 183105

    [36]

    Zhang Z H, Guo C, Kwong G, Deng X Q 2013 Carbon 51 313

  • [1] 周展辉, 李群, 贺小敏. AlN/β-Ga2O3异质结电子输运机制.  , 2023, 72(2): 028501. doi: 10.7498/aps.72.20221545
    [2] 贺艳斌, 白熙. 一维线性非共轭石墨烯基(CH2)n分子链的电子输运.  , 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [3] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质.  , 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [4] 池明赫, 赵磊. 石墨烯纳米片磁有序和自旋逻辑器件第一原理研究.  , 2018, 67(21): 217101. doi: 10.7498/aps.67.20181297
    [5] 柳福提, 张淑华, 程艳, 陈向荣, 程晓洪. (GaAs)n(n=1-4)原子链电子输运性质的理论计算.  , 2016, 65(10): 106201. doi: 10.7498/aps.65.106201
    [6] 陈鹰, 胡慧芳, 王晓伟, 张照锦, 程彩萍. B/N掺杂类直三角石墨烯纳米带器件引起的整流效应.  , 2015, 64(19): 196101. doi: 10.7498/aps.64.196101
    [7] 柳福提, 程艳, 陈向荣, 程晓洪, 曾志强. Au-Si60-Au分子结电子输运性质的理论计算.  , 2014, 63(17): 177304. doi: 10.7498/aps.63.177304
    [8] 柳福提, 程艳, 陈向荣, 程晓洪. GaAs纳米结点电子输运性质的第一性原理计算.  , 2014, 63(13): 137303. doi: 10.7498/aps.63.137303
    [9] 李彪, 徐大海, 曾晖. 边缘重构对锯齿型石墨烯纳米带电子输运的影响.  , 2014, 63(11): 117102. doi: 10.7498/aps.63.117102
    [10] 柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣. Au-Si-Au结点电子输运性质的第一性原理计算.  , 2013, 62(10): 107401. doi: 10.7498/aps.62.107401
    [11] 柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣. Si4团簇电子输运性质的第一性原理计算.  , 2013, 62(14): 140504. doi: 10.7498/aps.62.140504
    [12] 胡飞, 段玲, 丁建文. 锯齿型石墨纳米带叠层复合结的电子输运.  , 2012, 61(7): 077201. doi: 10.7498/aps.61.077201
    [13] 段玲, 胡飞, 丁建文. 准一维纳米线电子输运的梯度无序效应.  , 2011, 60(11): 117201. doi: 10.7498/aps.60.117201
    [14] 赵佩, 郑继明, 陈有为, 郭平, 任兆玉. 单壁碳纳米管吸附氧分子的电子输运性质理论研究.  , 2011, 60(6): 068501. doi: 10.7498/aps.60.068501
    [15] 张迷, 陈元平, 张再兰, 欧阳滔, 钟建新. 堆叠石墨片对锯齿型石墨纳米带电子输运的影响.  , 2011, 60(12): 127204. doi: 10.7498/aps.60.127204
    [16] 王利光, 张鸿宇, 王畅, Terence K. S. W.. 嵌入锂原子的zigzag型单壁碳纳米管的电子传导特性.  , 2010, 59(1): 536-540. doi: 10.7498/aps.59.536
    [17] 邓小清, 周继承, 张振华. 端基对分子器件整流性质的影响.  , 2010, 59(4): 2714-2720. doi: 10.7498/aps.59.2714
    [18] 郑新亮, 郑继明, 任兆玉, 郭平, 田进寿, 白晋涛. 钽硅团簇电子输运性质的第一性原理研究.  , 2009, 58(8): 5709-5715. doi: 10.7498/aps.58.5709
    [19] 牛秀明, 齐元华. 分子结点电子输运性质的理论研究.  , 2008, 57(11): 6926-6931. doi: 10.7498/aps.57.6926
    [20] 唐黎明, 王玲玲, 王 宁, 严 敏. 磁场下非对称T型量子波导的电子输运行为.  , 2008, 57(5): 3203-3211. doi: 10.7498/aps.57.3203
计量
  • 文章访问数:  6544
  • PDF下载量:  1018
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-31
  • 修回日期:  2013-06-04
  • 刊出日期:  2013-09-05

/

返回文章
返回
Baidu
map