搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Chodorow型耦合腔慢波结构色散特性和耦合阻抗理论分析

何昉明 罗积润 朱敏 郭炜

引用本文:
Citation:

Chodorow型耦合腔慢波结构色散特性和耦合阻抗理论分析

何昉明, 罗积润, 朱敏, 郭炜

Analysis of the dispersion and interaction impedance for a coupled cavity slow wave structure with double in-line slots in TWT

He Fang-Ming, Luo Ji-Run, Zhu Min, Guo Wei
PDF
导出引用
  • 本文建立了Chodorow型耦合腔慢波结构的解析模型, 利用并矢格林函数结合矩量法求解了场匹配方程, 给出了色散方程和耦合阻抗的计算式, 并数值计算出一个X波段Chodorow型慢波结构的高频特性. 结果表明, 本文方法的色散特性以及耦合阻抗与仿真软件HFSS计算的结果有很好的一致性, 且计算效率更高, 同时精度远高于等效电路法, 对工程设计有好的参考价值.
    An analytical model is presented in this paper for a coupled cavity slow-wave structure (CCSWS) with double in-line slots, also known as the “Chodorow” structure. Under matching boundary conditions in conjunction with Green’s function techniques and moment method (MOM), the formulae for discussing the high frequency characteristics of the SWS, including dispersion and interaction impedance, are given. The frequency characteristics for an X band Chodorow structure are calculated using these formulae, Ansoft HFSS code and equivalent circuit model. Results show that the dispersion and interaction impedance obtained with the formulae are in good agreement with those calculated by Ansoft HFSS code, while its calculation rate is more rapid than that with the code, and its calculation precision is higher than that with equivalent circuit method, which is helpful for the engineering design.
    • 基金项目: 国家自然科学基金(批准号: 11205162)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11205162).
    [1]

    Larsen P B, Abe D K, Cooke S J, Levush B, Antonsen T M, Myers R E 2010 IEEE Trans. on Plasma Science 38 1244

    [2]

    Cusick M, Begum R, Gajaria D, Grant T, Kolda P, Legarra J, Meyer C, Ramirez-Aldana J L, Pedro D S, Stockwell B, Yamane G 2012 IEEE International Vacuum Electronics Conference (IVEC2012) Monterey, USA Apr. 24-26 227

    [3]

    Wiejak W 2010 18th International Conference on Microwaves Radar and Wireless Communications Vilnius, Lithuania Jun. 14-16

    [4]

    Chodorow M, Nalos E J 1956 Proceedings of the IRE 649

    [5]

    Gilmour A S 2011 Principles of Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-Field Amplifiers and Gyrotrons (Norwood: Artech House) 422

    [6]

    Curnow H J 1965 IEEE Trans. on Microwave Theory and Techniques 13 671

    [7]

    Carter R G, Liu S K 1986 IEE Proceedings H 133

    [8]

    Christie V L, Kumar L, Balakrishnan N 2002 Microwave and Optical Technology Letters 35 322

    [9]

    Dialetis D, Chernin D P, Cooke S J, Antonsen T M, Chang C L, Levush B 2005 IEEE Trans. on Electron Devices 52 774

    [10]

    Bai C J, Li J Q, Hu Y L, Yang Z H, Li B 2012 Acta Phys. Sin. 61 178401 (in Chinese) [白春江, 李建清, 胡玉禄, 杨中海, 李斌 2012 61 178401]

    [11]

    Wu H S 1986 Principles of Microwave Electronics 1st Ed. (Beijing: Science Press) 217 (in Chinese) [吴鸿适 1986 微波电子学原理(北京:科学出版社) 第217页]

    [12]

    Zhang Z H, Wu H S 1986 Acta Electronica Sinica 14 7 (in Chinese) [张昭洪, 吴鸿 1986 电子学报 14 7]

    [13]

    Wang B, Xie W K 2007 Acta Phys. Sin. 56 7138 (in Chinese) [王彬,谢文楷 2007 56 7138]

    [14]

    Tai C T, Lu S 2005 Dyadic Green’s Function in Electromagnetic Theory 1st Ed. (Wuhan: Wuhan University Press) 42, 114-119 (in Chinese) [戴振铎, 鲁述 2005 电磁理论中的并矢格林函数 (武汉: 武汉大学出版社) 第42, 114-119页]

    [15]

    Harrington R F 1993 Field Computation by Moment Methods (New York: IEEE Press) 6-7

    [16]

    Levchenko E G, Nemak A K, Chayka V E 1969 Radio Engineering and Electronic Physics 14 1260

    [17]

    Kosmahl H G, Branch G M 1973 IEEE Trans. on Electron Devices 20 621

    [18]

    Connolly D J 1976 IEEE Trans. on Electron Devices 23 491

  • [1]

    Larsen P B, Abe D K, Cooke S J, Levush B, Antonsen T M, Myers R E 2010 IEEE Trans. on Plasma Science 38 1244

    [2]

    Cusick M, Begum R, Gajaria D, Grant T, Kolda P, Legarra J, Meyer C, Ramirez-Aldana J L, Pedro D S, Stockwell B, Yamane G 2012 IEEE International Vacuum Electronics Conference (IVEC2012) Monterey, USA Apr. 24-26 227

    [3]

    Wiejak W 2010 18th International Conference on Microwaves Radar and Wireless Communications Vilnius, Lithuania Jun. 14-16

    [4]

    Chodorow M, Nalos E J 1956 Proceedings of the IRE 649

    [5]

    Gilmour A S 2011 Principles of Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-Field Amplifiers and Gyrotrons (Norwood: Artech House) 422

    [6]

    Curnow H J 1965 IEEE Trans. on Microwave Theory and Techniques 13 671

    [7]

    Carter R G, Liu S K 1986 IEE Proceedings H 133

    [8]

    Christie V L, Kumar L, Balakrishnan N 2002 Microwave and Optical Technology Letters 35 322

    [9]

    Dialetis D, Chernin D P, Cooke S J, Antonsen T M, Chang C L, Levush B 2005 IEEE Trans. on Electron Devices 52 774

    [10]

    Bai C J, Li J Q, Hu Y L, Yang Z H, Li B 2012 Acta Phys. Sin. 61 178401 (in Chinese) [白春江, 李建清, 胡玉禄, 杨中海, 李斌 2012 61 178401]

    [11]

    Wu H S 1986 Principles of Microwave Electronics 1st Ed. (Beijing: Science Press) 217 (in Chinese) [吴鸿适 1986 微波电子学原理(北京:科学出版社) 第217页]

    [12]

    Zhang Z H, Wu H S 1986 Acta Electronica Sinica 14 7 (in Chinese) [张昭洪, 吴鸿 1986 电子学报 14 7]

    [13]

    Wang B, Xie W K 2007 Acta Phys. Sin. 56 7138 (in Chinese) [王彬,谢文楷 2007 56 7138]

    [14]

    Tai C T, Lu S 2005 Dyadic Green’s Function in Electromagnetic Theory 1st Ed. (Wuhan: Wuhan University Press) 42, 114-119 (in Chinese) [戴振铎, 鲁述 2005 电磁理论中的并矢格林函数 (武汉: 武汉大学出版社) 第42, 114-119页]

    [15]

    Harrington R F 1993 Field Computation by Moment Methods (New York: IEEE Press) 6-7

    [16]

    Levchenko E G, Nemak A K, Chayka V E 1969 Radio Engineering and Electronic Physics 14 1260

    [17]

    Kosmahl H G, Branch G M 1973 IEEE Trans. on Electron Devices 20 621

    [18]

    Connolly D J 1976 IEEE Trans. on Electron Devices 23 491

  • [1] 张建强, 秦彦军, 方峥, 范晓珍, 马云, 李文忠, 杨慧雅, 邝富丽, 翟耀, 师应龙, 党文强, 叶慧群, 方允樟. 多场耦合Fe基合金巨磁阻抗效应调控机制.  , 2022, 71(23): 237501. doi: 10.7498/aps.71.20221376
    [2] 刘永强, 孔令宝, 杜朝海, 刘濮鲲. 基于类表面等离子体激元的矩形金属光栅色散特性的研究.  , 2015, 64(17): 174102. doi: 10.7498/aps.64.174102
    [3] 谢文球, 王自成, 罗积润, 刘青伦. 正弦波导高频特性分析.  , 2014, 63(4): 044101. doi: 10.7498/aps.63.044101
    [4] 王兵, 文光俊, 王文祥. 同轴交错圆盘加载波导慢波结构高频特性的研究.  , 2014, 63(22): 224101. doi: 10.7498/aps.63.224101
    [5] 龚建强, 梁昌洪. 精确提取一维互易有限周期性结构色散特性的宏元胞法.  , 2013, 62(19): 199203. doi: 10.7498/aps.62.199203
    [6] 刘青伦, 王自成, 刘濮鲲, 董芳. 基于场匹配法的双排矩形栅慢波结构高频特性研究.  , 2012, 61(24): 244102. doi: 10.7498/aps.61.244102
    [7] 袁学松, 鄢扬, 刘盛纲. 有限引导磁场下相对论环形电子注色散特性的研究.  , 2011, 60(1): 014102. doi: 10.7498/aps.60.014102
    [8] 史宗君, 杨梓强, 侯钧, 兰峰, 梁正. 金属柱平板慢波系统高频特性研究.  , 2011, 60(4): 046803. doi: 10.7498/aps.60.046803
    [9] 葛行军, 钟辉煌, 钱宝良, 张军. 三种同轴双波纹周期慢波结构对比研究.  , 2010, 59(4): 2645-2652. doi: 10.7498/aps.59.2645
    [10] 彭维峰, 胡玉禄, 杨中海, 李建清, 陆麒如, 李斌. 螺旋线行波管注波互作用时域理论.  , 2010, 59(12): 8478-8483. doi: 10.7498/aps.59.8478
    [11] 路志刚, 魏彦玉, 宫玉彬, 吴周淼, 王文祥. 具有任意槽的矩形波导栅慢波结构高频特性的研究.  , 2007, 56(6): 3318-3323. doi: 10.7498/aps.56.3318
    [12] 王 彬, 谢文楷. 等离子体加载耦合腔慢波结构色散分析.  , 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [13] 肖 刘, 苏小保, 刘濮鲲. 带状螺旋线研究中的坐标变换.  , 2006, 55(5): 2152-2157. doi: 10.7498/aps.55.2152
    [14] 肖 刘, 苏小保, 刘濮鲲. 基于行波管螺旋导电面模型的空间电荷场研究.  , 2006, 55(10): 5150-5156. doi: 10.7498/aps.55.5150
    [15] 冯立娟, 江海涛, 李宏强, 张冶文, 陈 鸿. 光子晶体耦合腔波导的色散特性.  , 2005, 54(5): 2102-2105. doi: 10.7498/aps.54.2102
    [16] 王峨锋, 李宏福, 李 浩, 喻 胜, 牛新建, 刘迎辉. 螺旋波纹波导研究.  , 2005, 54(11): 5339-5343. doi: 10.7498/aps.54.5339
    [17] 张 勇, 莫元龙, 徐锐敏, 延 波, 谢小强. 等离子体填充盘荷波导高频特性分析.  , 2005, 54(11): 5239-5245. doi: 10.7498/aps.54.5239
    [18] 岳玲娜, 王文祥, 魏彦玉, 宫玉彬. 同轴任意槽形周期圆波导慢波结构色散特性的研究.  , 2005, 54(9): 4223-4228. doi: 10.7498/aps.54.4223
    [19] 罗勇, 李宏福, 谢仲怜, 喻胜, 邓学, 赵青, 徐勇. 含有吸收介质的突变结构腔体场匹配分析.  , 2004, 53(1): 229-234. doi: 10.7498/aps.53.229
    [20] 巴音贺希格, 齐向东, 唐玉国. 位相光栅色散特性的矢量衍射理论分析.  , 2003, 52(5): 1157-1161. doi: 10.7498/aps.52.1157
计量
  • 文章访问数:  6168
  • PDF下载量:  477
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-27
  • 修回日期:  2013-04-25
  • 刊出日期:  2013-09-05

/

返回文章
返回
Baidu
map