搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rabi模型的光场压缩

俞立先 梁奇锋 汪丽蓉 朱士群

引用本文:
Citation:

Rabi模型的光场压缩

俞立先, 梁奇锋, 汪丽蓉, 朱士群

Photon squeezing of the Rabi model

Yu Li-Xian, Liang Qi-Feng, Wang Li-Rong, Zhu Shi-Qun
PDF
导出引用
  • 电路量子电动力学的实验实现了光与人造原子的超强耦合相互作用, 相互作用强度与光场频率在同一个数量级.在超强耦合区域, 著名的旋波近似失效, 因此系统的动力学必须用含有反旋波项的Rabi模型描述.本文研究Rabi模型中的光场压缩.数值模拟结果发现, 光场压缩不是随耦合强度线性增加, 而是在合适的超强区域获得最大值.同时, 我们还发现, 较小的反旋波项有助于提高光场压缩.所得结果有利于实验上在超强区域中制备所需的压缩态.
    Recent experiments about the circuit cavity quantum electrodynamics have realized the ultrastrong couplings between the artificial atom and the photon, in which the coupling strengths have the same order of the photon frequency. In such a regime, the well-known rotating wave approximation is invalid, and the system dynamics is thus governed by the Rabi model. In this paper, we investigate the photon squeezing of the Rabi model. We find numerically that with the increase of the atom-photon coupling strength, the photon squeezing does not increase linearly, but displays a maximum in the ultrastrong coupling regime. In addition, we also reveal that the photonsqueezing can be enhanced by the counter-rotating terms of the Rabi model. Our results are of benefit to preparing the required squeezing state of the photon in experiment.
    • 基金项目: 国家自然科学基金(批准号: 11074184, 11275129, 61275211)和浙江省自然科学基金(批准号:LY13A040001)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074184, 11275129, 61275211) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LY13A040001).
    [1]

    Jaynes E T, Cummings F W 1963 Proc. IEEE 51 89

    [2]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)

    [3]

    Holstein T 1959 Ann. Phys. (Amsterdam, Neth.) 8 325

    [4]

    Raimond J M, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565

    [5]

    Blais A, Huang R S, Wallraff A, Girvin S M, Schoelkopf R J 2004 Phys. Rev. B 69 62320

    [6]

    Wallraff A, Schuster D, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S, Schoelkopf R 2004 Nature 431 162

    [7]

    Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hummer T, Solanoet E 2010 Nat. Phys. 6 772

    [8]

    Fedorov A, Feofanov A K, Macha P, Forn-Díaz P, Harmans C J P M, Mooij J E 2010 Phys. Rev. Lett. 105 060503

    [9]

    Crespi A, Longhi S, Osellame R 2012 Phys. Rev. Lett. 108 163601

    [10]

    Ballester D, Romero G, García-Ripoll J, Deppe F, Solano E 2012 Phys. Rev. X 2 021007

    [11]

    Arne G L 2013 Phys. Rev. A 87 033814

    [12]

    Forn-Díaz P, Lisenfeld J, Marcos D, García-Ripoll J J, Solano E, Harmans C J P M, Mooij J E 2010 Phys. Rev. Lett. 105 237001

    [13]

    Rabi I I 1936 Phys. Rev. 49 324

    [14]

    Irish E K 2007 Phys. Rev. Lett. 99 173601

    [15]

    Zhang Y W, Chen G, Yu L X, Liang Q F, Liang J Q, Jia S T 2011 Phys. Rev. A 83 065802

    [16]

    Yu L X, Zhu S Q, Liang Q F, Chen G, Jia S T 2012 Phys. Rev. A 86 015803

    [17]

    Braak D 2011 Phys. Rev. Lett. 107 100401

    [18]

    Zhang Y Y, Chen Q H, Wang K L 2010 Phys. Rev. B 81 121105

    [19]

    Chen Q H, Wang C, He S, Liu T, Wang K L 2012 Phys. Rev. A 86 023822

    [20]

    Chen Q H, Liu T, Zhang Y Y, Wang K L 2011 Europhys. Lett. 96 14003

    [21]

    Li X Q, Wang J, Wang F, Hu X M 2008 Acta Phys. Sin. 57 2236 (in Chinese) [李晓奇, 王剑, 王飞, 胡响明2008 57 2236]

    [22]

    Jia F, Xie S Y, Yang Y P 2006 Acta Phys. Sin. 56 5835 (in Chinese) [贾飞, 谢双媛, 羊亚平 2006 56 5835]

    [23]

    Liao X, Cong H L, Jiang D L, Ren X Z 2010 Acta Phys. Sin. 59 5508 (in Chinese) [廖旭, 丛红璐, 姜道来, 任学藻 2010 59 5508]

    [24]

    Bonci L, Roncaglia R, West B J, Grigolini P 1991 Phys. Rev. Lett. 67 2593

    [25]

    Ashhab S 2013 Phys. Rev. A 87 013826

    [26]

    Ridolfo A, Leib M, Savasta S, Hartmann M J 2012 Phys. Rev. Lett. 109 193602

    [27]

    Romero G, Ballester D, Wang Y M, Scarani V, Solano E 2012 Phys. Rev. Lett. 108 120501

    [28]

    Zheng H, Zhu S Y, Zubairy M S 2008 Phys. Rev. Lett. 101 200404

    [29]

    Liang Q F, Yu L X, Chen G, Jia S T 2013 Eur. Phys. J. D 67 21

    [30]

    Stoler D 1970 Phys. Rev. D 1 3217

    [31]

    Hollenhorst J N 1979 Phys. Rev. D 19 1669

    [32]

    Peng K C 2001 Physics 30 300 (in Chinese) [彭堃墀 2001 物理 30 300]

    [33]

    Zhang Y, Wang H, Li X Y, Jing J T, Xie C D, Peng K C 2000 Phys. Rev. A 62 023813

    [34]

    Zhang J, Ye C G, Gao F, Xiao M 2008 Phys. Rev. Lett. 101 233602

    [35]

    Song J, Fan H Y, Zhou J 2011 Acta Phys. Sin. 60 110302 (in Chinese) [宋军, 范洪义, 周军 2011 60 110302]

    [36]

    Fan H Y, Pan X Y 1998 Chin. Phys. Lett. 15 625

    [37]

    Zhao J G, Sun C Y, Liang B L, Su J 2009 Acta Phys. Sin. 58 4635 (in Chinese) [赵建刚, 孙长勇, 梁宝龙, 苏杰 2009 58 4635]

    [38]

    Li Z H, Yu M Z, Yang Y P 2008 Acta Phys. Sin. 57 1693 (in Chinese) [李征鸿, 于明章, 杨亚平 2008 57 1693]

    [39]

    Meystre P, Zubairy M S 1982 Phys. Lett. A 89 390

    [40]

    Knight P L 1986 Phys. Scr. 86 51

    [41]

    Kukliński J, Madajczyk J 1988 Phys. Rev. A 37 3175

    [42]

    Ma J, Wang X G, Sun C P, Nori F 2011 Phys. Rep. 509 89

    [43]

    Hillery M 1987 Phys. Rev. A 36 3796

    [44]

    Casanova J, Romero G, Lizuain I, García-Ripoll J J, Solano E 2010 Phys. Rev. Lett. 105 263603

    [45]

    Hillery M 1989 Phys. Rev. A 39 1556

  • [1]

    Jaynes E T, Cummings F W 1963 Proc. IEEE 51 89

    [2]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)

    [3]

    Holstein T 1959 Ann. Phys. (Amsterdam, Neth.) 8 325

    [4]

    Raimond J M, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565

    [5]

    Blais A, Huang R S, Wallraff A, Girvin S M, Schoelkopf R J 2004 Phys. Rev. B 69 62320

    [6]

    Wallraff A, Schuster D, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S, Schoelkopf R 2004 Nature 431 162

    [7]

    Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hummer T, Solanoet E 2010 Nat. Phys. 6 772

    [8]

    Fedorov A, Feofanov A K, Macha P, Forn-Díaz P, Harmans C J P M, Mooij J E 2010 Phys. Rev. Lett. 105 060503

    [9]

    Crespi A, Longhi S, Osellame R 2012 Phys. Rev. Lett. 108 163601

    [10]

    Ballester D, Romero G, García-Ripoll J, Deppe F, Solano E 2012 Phys. Rev. X 2 021007

    [11]

    Arne G L 2013 Phys. Rev. A 87 033814

    [12]

    Forn-Díaz P, Lisenfeld J, Marcos D, García-Ripoll J J, Solano E, Harmans C J P M, Mooij J E 2010 Phys. Rev. Lett. 105 237001

    [13]

    Rabi I I 1936 Phys. Rev. 49 324

    [14]

    Irish E K 2007 Phys. Rev. Lett. 99 173601

    [15]

    Zhang Y W, Chen G, Yu L X, Liang Q F, Liang J Q, Jia S T 2011 Phys. Rev. A 83 065802

    [16]

    Yu L X, Zhu S Q, Liang Q F, Chen G, Jia S T 2012 Phys. Rev. A 86 015803

    [17]

    Braak D 2011 Phys. Rev. Lett. 107 100401

    [18]

    Zhang Y Y, Chen Q H, Wang K L 2010 Phys. Rev. B 81 121105

    [19]

    Chen Q H, Wang C, He S, Liu T, Wang K L 2012 Phys. Rev. A 86 023822

    [20]

    Chen Q H, Liu T, Zhang Y Y, Wang K L 2011 Europhys. Lett. 96 14003

    [21]

    Li X Q, Wang J, Wang F, Hu X M 2008 Acta Phys. Sin. 57 2236 (in Chinese) [李晓奇, 王剑, 王飞, 胡响明2008 57 2236]

    [22]

    Jia F, Xie S Y, Yang Y P 2006 Acta Phys. Sin. 56 5835 (in Chinese) [贾飞, 谢双媛, 羊亚平 2006 56 5835]

    [23]

    Liao X, Cong H L, Jiang D L, Ren X Z 2010 Acta Phys. Sin. 59 5508 (in Chinese) [廖旭, 丛红璐, 姜道来, 任学藻 2010 59 5508]

    [24]

    Bonci L, Roncaglia R, West B J, Grigolini P 1991 Phys. Rev. Lett. 67 2593

    [25]

    Ashhab S 2013 Phys. Rev. A 87 013826

    [26]

    Ridolfo A, Leib M, Savasta S, Hartmann M J 2012 Phys. Rev. Lett. 109 193602

    [27]

    Romero G, Ballester D, Wang Y M, Scarani V, Solano E 2012 Phys. Rev. Lett. 108 120501

    [28]

    Zheng H, Zhu S Y, Zubairy M S 2008 Phys. Rev. Lett. 101 200404

    [29]

    Liang Q F, Yu L X, Chen G, Jia S T 2013 Eur. Phys. J. D 67 21

    [30]

    Stoler D 1970 Phys. Rev. D 1 3217

    [31]

    Hollenhorst J N 1979 Phys. Rev. D 19 1669

    [32]

    Peng K C 2001 Physics 30 300 (in Chinese) [彭堃墀 2001 物理 30 300]

    [33]

    Zhang Y, Wang H, Li X Y, Jing J T, Xie C D, Peng K C 2000 Phys. Rev. A 62 023813

    [34]

    Zhang J, Ye C G, Gao F, Xiao M 2008 Phys. Rev. Lett. 101 233602

    [35]

    Song J, Fan H Y, Zhou J 2011 Acta Phys. Sin. 60 110302 (in Chinese) [宋军, 范洪义, 周军 2011 60 110302]

    [36]

    Fan H Y, Pan X Y 1998 Chin. Phys. Lett. 15 625

    [37]

    Zhao J G, Sun C Y, Liang B L, Su J 2009 Acta Phys. Sin. 58 4635 (in Chinese) [赵建刚, 孙长勇, 梁宝龙, 苏杰 2009 58 4635]

    [38]

    Li Z H, Yu M Z, Yang Y P 2008 Acta Phys. Sin. 57 1693 (in Chinese) [李征鸿, 于明章, 杨亚平 2008 57 1693]

    [39]

    Meystre P, Zubairy M S 1982 Phys. Lett. A 89 390

    [40]

    Knight P L 1986 Phys. Scr. 86 51

    [41]

    Kukliński J, Madajczyk J 1988 Phys. Rev. A 37 3175

    [42]

    Ma J, Wang X G, Sun C P, Nori F 2011 Phys. Rep. 509 89

    [43]

    Hillery M 1987 Phys. Rev. A 36 3796

    [44]

    Casanova J, Romero G, Lizuain I, García-Ripoll J J, Solano E 2010 Phys. Rev. Lett. 105 263603

    [45]

    Hillery M 1989 Phys. Rev. A 39 1556

  • [1] 李庆回, 姚文秀, 李番, 田龙, 王雅君, 郑耀辉. 明亮压缩态光场的操控及量子层析.  , 2021, 70(15): 154203. doi: 10.7498/aps.70.20210318
    [2] 尤冰凌, 刘雪莹, 成书杰, 王晨, 高先龙. Jaynes-Cummings晶格模型和Rabi晶格模型的量子相变.  , 2021, 70(10): 100201. doi: 10.7498/aps.70.20202066
    [3] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉. 宽频带压缩态光场光学参量腔的设计.  , 2020, 69(23): 234204. doi: 10.7498/aps.69.20200890
    [4] 陈臻, 王帅鹏, 李铁夫, 游建强. 超强耦合电路量子电动力学系统中反旋波效应对量子比特频率移动的影响.  , 2020, 69(12): 124204. doi: 10.7498/aps.69.20200474
    [5] 李志强, 王月明. 一维谐振子束缚的自旋轨道耦合玻色气体.  , 2019, 68(17): 173201. doi: 10.7498/aps.68.20190143
    [6] 赵浩宇, 邓洪昌, 苑立波. Airy光纤:基于阵列波导耦合的光场调控方法.  , 2017, 66(7): 074211. doi: 10.7498/aps.66.074211
    [7] 刘增俊, 翟泽辉, 孙恒信, 郜江瑞. 低频压缩态光场的制备.  , 2016, 65(6): 060401. doi: 10.7498/aps.65.060401
    [8] 赵建刚, 孙长勇, 梁宝龙, 苏杰. 虚光场对玻色-爱因斯坦凝聚体与二项式光场相互作用系统中光场压缩性质的影响.  , 2009, 58(7): 4635-4640. doi: 10.7498/aps.58.4635
    [9] 康冬鹏, 任 珉, 马爱群, 钱 妍, 刘正君, 刘树田. k光子Jaynes-Cummings模型光场的熵压缩.  , 2008, 57(2): 873-879. doi: 10.7498/aps.57.873
    [10] 李征鸿, 于明章, 羊亚平. 变频率光场与二能级原子的相互作用:双光子过程.  , 2008, 57(3): 1693-1698. doi: 10.7498/aps.57.1693
    [11] 钱 妍, 马爱群, 马志民, 刘正君, 刘树田. 压缩真空场与耦合双原子Raman相互作用过程中光场的相位演化特性.  , 2007, 56(8): 4571-4577. doi: 10.7498/aps.56.4571
    [12] 黄春佳, 周明, 厉江帆, 贺慧勇. 单模辐射场与耦合双原子相互作用系统中场熵的压缩特性.  , 2002, 51(4): 805-808. doi: 10.7498/aps.51.805
    [13] 冯健, 王继锁, 高云峰, 詹明生. 光场及原子-光场耦合的非线性对腔内原子辐射谱的影响.  , 2001, 50(7): 1279-1283. doi: 10.7498/aps.50.1279
    [14] 黄春佳, 厉江帆, 贺慧勇. 压缩真空场与耦合双原子Raman相互作用过程中光场的量子特性.  , 2001, 50(3): 473-477. doi: 10.7498/aps.50.473
    [15] 黄春佳, 周 明, 厉江帆, 孔凡志. 双模压缩真空场与耦合双原子相互作用系统中光场的量子特性.  , 2000, 49(11): 2159-2164. doi: 10.7498/aps.49.2159
    [16] 田 旭, 黄湘友. 耦合压缩Landau态.  , 1999, 48(8): 1399-1404. doi: 10.7498/aps.48.1399
    [17] 孔 青, 朱立俊, 王加祥, 霍裕昆. 电子在超强激光场中的动力学特性.  , 1999, 48(4): 650-660. doi: 10.7498/aps.48.650
    [18] 李高翔, 彭金生. 论Jsynes-Cummings模型中原子偶极压缩和光场压缩间的关联.  , 1995, 44(10): 1670-1678. doi: 10.7498/aps.44.1670
    [19] 彭堃墀, 黄茂全, 刘晶, 廉毅敏, 张天才, 于辰, 谢常德, 郭光灿. 双模光场压缩态的实验研究.  , 1993, 42(7): 1079-1085. doi: 10.7498/aps.42.1079
    [20] 张卫平, 谭维翰. 原子在压缩光场中的共振辐射.  , 1989, 38(7): 1041-1047. doi: 10.7498/aps.38.1041
计量
  • 文章访问数:  6927
  • PDF下载量:  789
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-07
  • 修回日期:  2013-04-25
  • 刊出日期:  2013-08-05

/

返回文章
返回
Baidu
map