搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非对称量子通道受控QOT量子投票协议

王郁武 韦相和 朱兆辉

引用本文:
Citation:

基于非对称量子通道受控QOT量子投票协议

王郁武, 韦相和, 朱兆辉

Quantum voting protocols based on the non-symmetric quantum channel with controlled quantum operation teleportation

Wang Yu-Wu, Wei Xiang-He, Zhu Zhao-Hui
PDF
导出引用
  • 提出一种量子投票协议, 协议基于非对称量子通道受控量子局域幺正操作隐形传输(quantum operation teleportation, QOT). 由公正机构CA提供的零知识证明的量子身份认证, 保证选民身份认证的匿名性. 计票机构Bob制造高维Greenberger-Horne-Zeilinger 纠缠态建立一个高维量子通信信道. 选民对低维的量子选票进行局域幺正操作的量子投票, 是通过非对称基的测量和监票机构Charlie的辅助测量隐形传输的. Bob在Charlie帮助下可以通过幺正操作结果得到投票结果. 与其他一般的QOT量子投票协议相比, 该协议利用量子信息与传输的量子信道不同维, 使单粒子信息不能被窃取、防止伪造.选举过程由于有Charlie的监督, 使得投票公正和不可抵赖.由于量子局域幺正操作隐形传输的成功概率是1, 使量子投票的可靠性得以保证.
    In the paper, we present a kind of quantum voting protocol, which is based on controlled quantum teleportation of local unitary operations in non-symmetric quantum channel. In this protocol, the umpire CA with zero knowledge proof quantum identity authentication ensures voter’s anonymous identity authentication. The counting institution Bob generates a high-dimensional Greenberger-Horne-Zeilinger entangled state to establish a high-dimensional quantum communication channel. Performing the local unitary operation on their low-dimensional quantum ballot, voter’s quantum vote is teleportated by asymmetric matrix measurement and scrutineer Charlie auxiliary measuring. With the scrutineer Charlie’s help, Bob achieves the voting result by the output of unitary operation. Compared with other general quantum operation teleportation quantum voting protocol, the protocol utilizes the quantum information and transmission of quantum channel, which have different dimensions, so single particle information cannot be stolen, and can prevent forgery. The electoral process is fair and undeniable, owing to Charlie’s supervision. Since the success probability of quantum teleportation of local unitary operations is 1, the quantum voting is reliable.
    • 基金项目: 江苏省教育厅基金(批准号: 11KJB520002, JHB2012-53)资助的课题.
    • Funds: Project supported by Jiangsu Provincial Department of Education, China (Grant Nos. 11KJB520002, JHB2012-53).
    [1]

    Vaccaro J A, Joseph S, Anthony C 2007 Phys. Rev. A 75 012333

    [2]

    Hillery M 2006 The International Soeiety for Optieal Engineering 10.1117/2.1200610.0419

    [3]

    Wen X J, Cai X J 2011 J. Shandong Univ. (Natural Science) 46 9 (in Chinese) [温晓军, 蔡学军 2011 山东大学学报 (理学版) 46 9]

    [4]

    Yi Z, He G Q, Zeng G H 2009 Acta Phys.Sin. 58 3166 (in Chinese) [易智, 何广强, 曾贵华 2009 58 3166]

    [5]

    Horoshko D, Kilin S 2011 Phys. Lett. A 375 1172

    [6]

    Wu Q L, Liu Y, Chen W, Han Z F, Wang K Y, Guo G C 2010 Prog. Phys. 30 296 (in Chinese) [吴青林, 刘云, 陈巍, 韩正甫, 王克逸, 郭光灿 2010 物理学进展 30 296]

    [7]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [8]

    Huelga S F, Vaccaro J A, Chefles A 2001 Phys. Rev. A 63 042303

    [9]

    Cirac J I, Parkins A S 1994 Phys. Rev. A 50 R4441

    [10]

    Moussa M H Y 1997 Phys. Rev. A 55 R3287

    [11]

    Lee J, Kim M S 2000 Phys. Rev. Lett. 84 4236

    [12]

    Li W L, Li C F, Guo G C 2000 Phys. Rev. A 61 034301

    [13]

    Bowen G, Bose S 2001 Phys. Rev. Lett. 87 267901

    [14]

    Rigolin G 2005 Phys. Rev. A 71 032303

    [15]

    Yao Y, Chua W K 2006 Phys. Rev. Lett. 96 060502

    [16]

    Gordon G, Rigolin G 2006 Phys. Rev. A 73 042309

    [17]

    Muralidharan S, Panigrahi P K 2008 Phys. Rev. A 77 032321

    [18]

    Bouwmeester D, Pan J W, Kmattle, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [19]

    Furusawa A, Sorensen J L, Braustein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706

    [20]

    Stemholm S, Bardroff P J 1998 Phys. Rev. A 58 4373

    [21]

    Son W, Lee J, Kim M S, Park Y J 2001 Phys. Rev. A 64 064304

    [22]

    Hsu L Y 2003 Phys. Lett. A 311 459

    [23]

    Roa L, Delgado A, Fuentes-Guridi I 2003 Phys. Rev. A 68 022310

    [24]

    Dai H Y, Zhang M, Li C Z 2004Phys. Lett. A 323 360

    [25]

    Pati A K, Agrawal P 2007 Phys. Lett. A 371 185

    [26]

    Zhan Y B 2007 Chin. Phys. 16 2557

    [27]

    Gulfam Q ul A, Ikram R ul I M 2008 J. Phys. B: At. Mol. Opt. Phys. 41 165502

    [28]

    Huelga S F, Plenio M B, Vaccaro J A 2002 Phys. Rev. A 65 042316

    [29]

    Zou X B, Pahlke K, Mathis W 2002 Phys. Rev. A 65 064305

    [30]

    Dr W, Vidal G, Cirac J I 2002 Phys. Rev. Lett. 89 057901

    [31]

    Zhang Y S, Ye M Y, Guo G C 2005 Phys. Rev. A 71 062331

    [32]

    Wang A M 2006 Phys. Rev. A 74 032317

    [33]

    Yao C M 2006 Chin. Phys. Lett. 23 545

    [34]

    Wang A M 2007 Phys. Rev. A 75 062323

    [35]

    Zhao N B, Wang A M 2007 Phys. Rev. A 76 062317

    [36]

    Zhao N B, Wang A M 2008 Phys. Rev. A 78 014305

    [37]

    Yao C M, Cao B F 2009 Phys. Lett. A 373 1011

    [38]

    Zhang Z J, Cheung C Y 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165508

    [39]

    Zhan Y B, Zhang Q Y, Wang Y W, Ma P C 2010 Chin. Phys. Lett. 27 010307

    [40]

    Wang Y W, Zhan Y B 2009 Acta Phys. Sin. 58 7668 (in Chinese) [王郁武, 詹佑邦 2009 58 7668]

    [41]

    Wang J, Chen H Q, Zhang Q, Tang C J 2007 Acta Phys. Sin. 56 673 (in Chinese) [王剑, 陈皇卿, 张权, 唐朝京 2007 56 673]

    [42]

    Fan Q B, Zhang S 2006 Phys. Lett. A 348 160

    [43]

    Zhan Y B, Ma P C, Zhang Q Y 2012 Inter. J. Quant. Infor. 10 1250074

    [44]

    Pati A K 2001 Phys. Rev. A 63 014302

    [45]

    Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (New York: IEEE Press) p175

  • [1]

    Vaccaro J A, Joseph S, Anthony C 2007 Phys. Rev. A 75 012333

    [2]

    Hillery M 2006 The International Soeiety for Optieal Engineering 10.1117/2.1200610.0419

    [3]

    Wen X J, Cai X J 2011 J. Shandong Univ. (Natural Science) 46 9 (in Chinese) [温晓军, 蔡学军 2011 山东大学学报 (理学版) 46 9]

    [4]

    Yi Z, He G Q, Zeng G H 2009 Acta Phys.Sin. 58 3166 (in Chinese) [易智, 何广强, 曾贵华 2009 58 3166]

    [5]

    Horoshko D, Kilin S 2011 Phys. Lett. A 375 1172

    [6]

    Wu Q L, Liu Y, Chen W, Han Z F, Wang K Y, Guo G C 2010 Prog. Phys. 30 296 (in Chinese) [吴青林, 刘云, 陈巍, 韩正甫, 王克逸, 郭光灿 2010 物理学进展 30 296]

    [7]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [8]

    Huelga S F, Vaccaro J A, Chefles A 2001 Phys. Rev. A 63 042303

    [9]

    Cirac J I, Parkins A S 1994 Phys. Rev. A 50 R4441

    [10]

    Moussa M H Y 1997 Phys. Rev. A 55 R3287

    [11]

    Lee J, Kim M S 2000 Phys. Rev. Lett. 84 4236

    [12]

    Li W L, Li C F, Guo G C 2000 Phys. Rev. A 61 034301

    [13]

    Bowen G, Bose S 2001 Phys. Rev. Lett. 87 267901

    [14]

    Rigolin G 2005 Phys. Rev. A 71 032303

    [15]

    Yao Y, Chua W K 2006 Phys. Rev. Lett. 96 060502

    [16]

    Gordon G, Rigolin G 2006 Phys. Rev. A 73 042309

    [17]

    Muralidharan S, Panigrahi P K 2008 Phys. Rev. A 77 032321

    [18]

    Bouwmeester D, Pan J W, Kmattle, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [19]

    Furusawa A, Sorensen J L, Braustein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706

    [20]

    Stemholm S, Bardroff P J 1998 Phys. Rev. A 58 4373

    [21]

    Son W, Lee J, Kim M S, Park Y J 2001 Phys. Rev. A 64 064304

    [22]

    Hsu L Y 2003 Phys. Lett. A 311 459

    [23]

    Roa L, Delgado A, Fuentes-Guridi I 2003 Phys. Rev. A 68 022310

    [24]

    Dai H Y, Zhang M, Li C Z 2004Phys. Lett. A 323 360

    [25]

    Pati A K, Agrawal P 2007 Phys. Lett. A 371 185

    [26]

    Zhan Y B 2007 Chin. Phys. 16 2557

    [27]

    Gulfam Q ul A, Ikram R ul I M 2008 J. Phys. B: At. Mol. Opt. Phys. 41 165502

    [28]

    Huelga S F, Plenio M B, Vaccaro J A 2002 Phys. Rev. A 65 042316

    [29]

    Zou X B, Pahlke K, Mathis W 2002 Phys. Rev. A 65 064305

    [30]

    Dr W, Vidal G, Cirac J I 2002 Phys. Rev. Lett. 89 057901

    [31]

    Zhang Y S, Ye M Y, Guo G C 2005 Phys. Rev. A 71 062331

    [32]

    Wang A M 2006 Phys. Rev. A 74 032317

    [33]

    Yao C M 2006 Chin. Phys. Lett. 23 545

    [34]

    Wang A M 2007 Phys. Rev. A 75 062323

    [35]

    Zhao N B, Wang A M 2007 Phys. Rev. A 76 062317

    [36]

    Zhao N B, Wang A M 2008 Phys. Rev. A 78 014305

    [37]

    Yao C M, Cao B F 2009 Phys. Lett. A 373 1011

    [38]

    Zhang Z J, Cheung C Y 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165508

    [39]

    Zhan Y B, Zhang Q Y, Wang Y W, Ma P C 2010 Chin. Phys. Lett. 27 010307

    [40]

    Wang Y W, Zhan Y B 2009 Acta Phys. Sin. 58 7668 (in Chinese) [王郁武, 詹佑邦 2009 58 7668]

    [41]

    Wang J, Chen H Q, Zhang Q, Tang C J 2007 Acta Phys. Sin. 56 673 (in Chinese) [王剑, 陈皇卿, 张权, 唐朝京 2007 56 673]

    [42]

    Fan Q B, Zhang S 2006 Phys. Lett. A 348 160

    [43]

    Zhan Y B, Ma P C, Zhang Q Y 2012 Inter. J. Quant. Infor. 10 1250074

    [44]

    Pati A K 2001 Phys. Rev. A 63 014302

    [45]

    Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (New York: IEEE Press) p175

  • [1] 周江平, 周媛媛, 周学军. 非对称信道相位匹配量子密钥分发.  , 2023, 72(14): 140302. doi: 10.7498/aps.72.20230652
    [2] 张乐, 袁训锋, 谭小东. 退相位环境下Werner态在石墨烯基量子通道中的隐形传输.  , 2022, 71(7): 070304. doi: 10.7498/aps.71.20211881
    [3] 唐杰, 石磊, 魏家华, 于惠存, 薛阳, 武天雄. 基于d维GHZ态的多方量子密钥协商.  , 2020, 69(20): 200301. doi: 10.7498/aps.69.20200799
    [4] 武莹, 李锦芳, 刘金明. 基于部分测量增强量子隐形传态过程的量子Fisher信息.  , 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [5] 杨璐, 马鸿洋, 郑超, 丁晓兰, 高健存, 龙桂鲁. 基于量子隐形传态的量子保密通信方案.  , 2017, 66(23): 230303. doi: 10.7498/aps.66.230303
    [6] 刘世右, 郑凯敏, 贾芳, 胡利云, 谢芳森. 单-双模组合压缩热态的纠缠性质及在量子隐形传态中的应用.  , 2014, 63(14): 140302. doi: 10.7498/aps.63.140302
    [7] 东晨, 赵尚弘, 赵卫虎, 石 磊, 赵顾颢. 非对称信道传输效率的测量设备无关量子密钥分配研究.  , 2014, 63(3): 030302. doi: 10.7498/aps.63.030302
    [8] 乔盼盼, 艾合买提·阿不力孜, 蔡江涛, 路俊哲, 麦麦提依明·吐孙, 日比古·买买提明. 利用热平衡态超导电荷量子比特实现量子隐形传态.  , 2012, 61(24): 240303. doi: 10.7498/aps.61.240303
    [9] 周小清, 邬云文. 量子隐形传态网络的广播与组播.  , 2012, 61(17): 170303. doi: 10.7498/aps.61.170303
    [10] 印娟, 钱勇, 李晓强, 包小辉, 彭承志, 杨涛, 潘阁生. 远距离量子通信实验中的高维纠缠源.  , 2011, 60(6): 060308. doi: 10.7498/aps.60.060308
    [11] 周小清, 邬云文, 赵晗. 量子隐形传态网络的互联与路由策略.  , 2011, 60(4): 040304. doi: 10.7498/aps.60.040304.2
    [12] 何锐, Bing He. 量子隐形传态的新方案.  , 2011, 60(6): 060302. doi: 10.7498/aps.60.060302
    [13] 王海霞, 殷雯, 王芳卫. 耦合量子点中的纠缠测量.  , 2010, 59(8): 5241-5245. doi: 10.7498/aps.59.5241
    [14] 陈立冰, 谭鹏, 董少光, 路洪. 利用二粒子部分纠缠态实现开靶目标的非局域量子可控非(CNOT)门的受控操作.  , 2009, 58(10): 6772-6778. doi: 10.7498/aps.58.6772
    [15] 易智, 何广强, 曾贵华. 基于双模压缩态的量子投票协议.  , 2009, 58(5): 3166-3172. doi: 10.7498/aps.58.3166
    [16] 唐有良, 刘 翔, 张小伟, 唐筱芳. 用一个纠缠态实现多粒子纠缠态的量子隐形传送.  , 2008, 57(12): 7447-7451. doi: 10.7498/aps.57.7447
    [17] 周小清, 邬云文. 利用三粒子纠缠态建立量子隐形传态网络的探讨.  , 2007, 56(4): 1881-1887. doi: 10.7498/aps.56.1881
    [18] 查新未. 量子隐形传送态的正交完备基展开与算符变换.  , 2007, 56(4): 1875-1880. doi: 10.7498/aps.56.1875
    [19] 刘传龙, 郑亦庄. 纠缠相干态的量子隐形传态.  , 2006, 55(12): 6222-6228. doi: 10.7498/aps.55.6222
    [20] 石名俊, 杜江峰, 朱栋培. 量子纯态的纠缠度.  , 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
计量
  • 文章访问数:  6616
  • PDF下载量:  531
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-07
  • 修回日期:  2013-04-16
  • 刊出日期:  2013-08-05

/

返回文章
返回
Baidu
map