搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al掺杂对合金Mg1-xTix及其氢化物稳定性的影响

薛丽 易林

引用本文:
Citation:

Al掺杂对合金Mg1-xTix及其氢化物稳定性的影响

薛丽, 易林

Influence of Al doping on stability of Mg1-xTix and their hydrides

Xue Li, Yi Lin
PDF
导出引用
  • 用密度泛函理论,研究了Al对合金Mg1-xTix及其氢化物稳定性和电子结构的影响. 通过计算不同掺杂浓度的Mg-Ti-Al合金的形成焓,发现当Al和Ti的浓度之比为1:1时, 合金结构最稳定,有利于氢的可逆吸收;而掺杂体系的氢化物稳定性降低, 可提高放氢性能.通过对态密度,电子密度和键长的分析, 表明Al改善Mg-Ti系统的放氢性能的原因是掺杂后减少了低能级区成键态的电子以及减弱了Mg-H, Ti-H原子间的相互作用.
    Based on the density functional theory, influences of Al doping on stability and electronic structure of MgxTi1-x alloys and their hydrides were investigated. By calculating the formation energies of Mg-Ti-Al system, it is found that the best effect was obtained when the Ti-Al ratio was fixed at 1: 1, where the metal alloy was most stable, and was helpful to reversibly hydrogenate. Moreover, the partial substitution of Al for Ti atoms decreased the stability of the hydrides and improved the hydrogen storage properties. The analyses of the density of states, electron density and bond length showed that the improved properties of MgxTi1-x alloys and their hydrides with Al doping are due to the decrease in the number of bonding electrons and the weakening of Mg-H and Ti-H interactions in doped systems.
    • 基金项目: 国家科技部博士后基金(批准号: 2012M511603)资助的课题.
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2012M511603).
    [1]

    Coontz R, Hanson B 2004 Science 305 957

    [2]

    Chen R C, Yang L, D Y Y, Zhu Z Q, Peng S M, Long X G, Gao F, Zu X T 2012 Chin. Phys. B 21 056601

    [3]

    D Y Y, Yang L, Peng S M, Long X G, Zhou X S, Zu X T 2012 Acta Phys. Sin. 61 108801 (in Chinese) [代云雅, 杨莉, 彭述明, 龙兴贵, 周晓松, 祖小涛 2012 61 108801]

    [4]

    Stampfer Jr J F, Holley Jr C E, Suttle J F 1960 J. Am. Chem. Soc. 82 3504

    [5]

    Liang G, Huot J, Boily S, Van Neste A, Schulz R 1999 J. Alloys. Compd. 292 247

    [6]

    Pelletier J F, Huot J, Sutton M, Schulz R, Sandy A R, Lurio L B, Mochrie S G J 2001 Phys. Rev. B 63 052103

    [7]

    Shang C X, Bououdina M, Song Y, Guo Z X 2004 Int. J. Hydrogen Energy. 29 73

    [8]

    Song Y, Guo Z X, Yang R 2004 Phys. Rev. B 69 094205

    [9]

    Deng Y H, Liu J S 2011 Acta Phys. Sin. 60 11 (in Chinese) [邓永和, 刘金烁 2011 60 11]

    [10]

    Er S, Tiwari D, de Wijs G A, Brocks G 2009 Phys. Rev. B 79 024105

    [11]

    Er S, van Setten M J, de Wijs G A, Brocks G 2010 J. Phys.: Condens. Matter. 22 074208

    [12]

    Vermeulen P, van Thiel E F M J, Notten P H L 2007 Chem. Eur. J. 13 9892

    [13]

    Shelyapina M G, Fruchart D, Miraglia S, Girard G 2011 Phys. Solid State 53 6

    [14]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens Matter. 14 2717

    [15]

    Liu Z M, Cui T, Ma Y M, Liu B B, Zou G T 2007 Acta Phys. Sin. 56 8 (in Chinese) [刘志明, 崔田, 马琰铭, 刘冰冰, 邹广田 2007 56 8]

    [16]

    Zhang H, Qi K Z, Zhang G Y, Wu D, Zhu S L 2009 Acta Phys. Sin. 5811 (in Chinese) [张辉, 戚克振, 张国英, 吴迪, 朱圣龙 2009 58 11]

    [17]

    Mokhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [18]

    Marlo M, Milman V 2000 Phys. Rev. B 62 2899

    [19]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [20]

    Hammer B, Hansen L B, Norkov J K 1999 Phys. Rev. B 59 7413

    [21]

    Franscis G P, Payne M C 1990 J. Phys.: Condens Matter. 2 4395

    [22]

    Ronnebro E, Kyoi D, Kitano Y, Sakai T 2005 Proceedings of the 9th International Symposium on Metal-Hydrogen Systems, Fundamentals and Applications Cracow, POLAND, September 05-10, 2004 p68

    [23]

    Shelyapina M G, Fruchart D, Wolfers P 2010 Int. J. Hydrogen Energy 35 2025

    [24]

    Nakamura H, Nguyen-Manh D, Pettifor D G 1998 J. Alloy. Compd. 281 81

    [25]

    Kerimov K M, Dunaev S F, Sljusarenko E M 1987 J. Less-Common Met. 133 297

    [26]

    van Mal H H, Buschow K H C, Miedema A R 1974 J. Less-Common Met. 35 65

    [27]

    Er S, De Wijs G A, Brocks G 2009 J. Phys. Chem. C 113 8997

  • [1]

    Coontz R, Hanson B 2004 Science 305 957

    [2]

    Chen R C, Yang L, D Y Y, Zhu Z Q, Peng S M, Long X G, Gao F, Zu X T 2012 Chin. Phys. B 21 056601

    [3]

    D Y Y, Yang L, Peng S M, Long X G, Zhou X S, Zu X T 2012 Acta Phys. Sin. 61 108801 (in Chinese) [代云雅, 杨莉, 彭述明, 龙兴贵, 周晓松, 祖小涛 2012 61 108801]

    [4]

    Stampfer Jr J F, Holley Jr C E, Suttle J F 1960 J. Am. Chem. Soc. 82 3504

    [5]

    Liang G, Huot J, Boily S, Van Neste A, Schulz R 1999 J. Alloys. Compd. 292 247

    [6]

    Pelletier J F, Huot J, Sutton M, Schulz R, Sandy A R, Lurio L B, Mochrie S G J 2001 Phys. Rev. B 63 052103

    [7]

    Shang C X, Bououdina M, Song Y, Guo Z X 2004 Int. J. Hydrogen Energy. 29 73

    [8]

    Song Y, Guo Z X, Yang R 2004 Phys. Rev. B 69 094205

    [9]

    Deng Y H, Liu J S 2011 Acta Phys. Sin. 60 11 (in Chinese) [邓永和, 刘金烁 2011 60 11]

    [10]

    Er S, Tiwari D, de Wijs G A, Brocks G 2009 Phys. Rev. B 79 024105

    [11]

    Er S, van Setten M J, de Wijs G A, Brocks G 2010 J. Phys.: Condens. Matter. 22 074208

    [12]

    Vermeulen P, van Thiel E F M J, Notten P H L 2007 Chem. Eur. J. 13 9892

    [13]

    Shelyapina M G, Fruchart D, Miraglia S, Girard G 2011 Phys. Solid State 53 6

    [14]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens Matter. 14 2717

    [15]

    Liu Z M, Cui T, Ma Y M, Liu B B, Zou G T 2007 Acta Phys. Sin. 56 8 (in Chinese) [刘志明, 崔田, 马琰铭, 刘冰冰, 邹广田 2007 56 8]

    [16]

    Zhang H, Qi K Z, Zhang G Y, Wu D, Zhu S L 2009 Acta Phys. Sin. 5811 (in Chinese) [张辉, 戚克振, 张国英, 吴迪, 朱圣龙 2009 58 11]

    [17]

    Mokhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [18]

    Marlo M, Milman V 2000 Phys. Rev. B 62 2899

    [19]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [20]

    Hammer B, Hansen L B, Norkov J K 1999 Phys. Rev. B 59 7413

    [21]

    Franscis G P, Payne M C 1990 J. Phys.: Condens Matter. 2 4395

    [22]

    Ronnebro E, Kyoi D, Kitano Y, Sakai T 2005 Proceedings of the 9th International Symposium on Metal-Hydrogen Systems, Fundamentals and Applications Cracow, POLAND, September 05-10, 2004 p68

    [23]

    Shelyapina M G, Fruchart D, Wolfers P 2010 Int. J. Hydrogen Energy 35 2025

    [24]

    Nakamura H, Nguyen-Manh D, Pettifor D G 1998 J. Alloy. Compd. 281 81

    [25]

    Kerimov K M, Dunaev S F, Sljusarenko E M 1987 J. Less-Common Met. 133 297

    [26]

    van Mal H H, Buschow K H C, Miedema A R 1974 J. Less-Common Met. 35 65

    [27]

    Er S, De Wijs G A, Brocks G 2009 J. Phys. Chem. C 113 8997

  • [1] 刘睿, 黄晨阳, 武耀蓉, 胡静, 莫润阳, 王成会. 声空化场中球状泡团的结构稳定性分析.  , 2024, 73(8): 084303. doi: 10.7498/aps.73.20232008
    [2] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析.  , 2024, 73(8): 084301. doi: 10.7498/aps.73.20231956
    [3] 李凡, 张先梅, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳. 液体薄层中环链状空化泡云结构稳定性分析.  , 2022, 71(8): 084303. doi: 10.7498/aps.71.20212257
    [4] 林洪斌, 林春, 陈越, 钟克华, 张健敏, 许桂贵, 黄志高. 第一性原理研究Mg掺杂对LiCoO2正极材料结构稳定性及其电子结构的影响.  , 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [5] 杨雪, 丁大军, 胡湛, 赵国明. 中性和阳离子丁酮团簇的结构及稳定性的理论研究.  , 2018, 67(3): 033601. doi: 10.7498/aps.67.20171862
    [6] 马振宁, 周全, 汪青杰, 王逊, 王磊. Mg-Y-Cu合金长周期有序相热力学稳定性及其电子结构的第一性原理研究.  , 2016, 65(23): 236101. doi: 10.7498/aps.65.236101
    [7] 贺艳斌, 贾建峰, 武海顺. N2H4在NiFe(111)合金表面吸附稳定性和电子结构的第一性原理研究.  , 2015, 64(20): 203101. doi: 10.7498/aps.64.203101
    [8] 马振宁, 蒋敏, 王磊. Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究.  , 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [9] 杨振辉, 王菊, 刘涌, 王慷慨, 苏婷, 郭春林, 宋晨路, 韩高荣. 锐钛矿相和金红石相Nb:TiO2电学性质的GGA(+U)法研究.  , 2014, 63(15): 157101. doi: 10.7498/aps.63.157101
    [10] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究.  , 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [11] 王转玉, 康伟丽, 贾建峰, 武海顺. Ti2Bn(n=1–10)团簇的结构与稳定性:基于从头算的研究.  , 2014, 63(23): 233102. doi: 10.7498/aps.63.233102
    [12] 陈海军, 李向富. 二维线性与非线性光晶格中物质波孤立子的稳定性.  , 2013, 62(7): 070302. doi: 10.7498/aps.62.070302
    [13] 张娟, 周志刚, 石玉仁, 杨红娟, 段文山. 修正KP方程及其孤波解的稳定性.  , 2012, 61(13): 130401. doi: 10.7498/aps.61.130401
    [14] 金蓉, 谌晓洪. VOxH2O (x= 15)团簇的结构及稳定性研究.  , 2012, 61(9): 093103. doi: 10.7498/aps.61.093103
    [15] 宋健, 李锋, 邓开明, 肖传云, 阚二军, 陆瑞锋, 吴海平. 单层硅Si6H4Ph2的稳定性和电子结构密度泛函研究.  , 2012, 61(24): 246801. doi: 10.7498/aps.61.246801
    [16] 崔健, 罗积润, 朱敏, 郭炜. 休斯结构多间隙耦合腔的稳定性分析.  , 2011, 60(6): 061101. doi: 10.7498/aps.60.061101
    [17] 高潭华, 吴顺情, 胡春华, 朱梓忠. 二维BC2 N薄片的结构稳定性和电子性质.  , 2011, 60(12): 127305. doi: 10.7498/aps.60.127305
    [18] 张秀荣, 吴礼清, 康张李, 唐会帅. OsnN0,±(n=1—6)团簇几何结构与稳定性的理论研究.  , 2011, 60(5): 053601. doi: 10.7498/aps.60.053601
    [19] 郭向阳, 常本康, 王晓晖, 张益军, 杨铭. 反射式负电子亲和势GaN光电阴极的光电发射及稳定性研究.  , 2011, 60(5): 058101. doi: 10.7498/aps.60.058101
    [20] 王 岩, 韩晓艳, 任慧志, 侯国付, 郭群超, 朱 锋, 张德坤, 孙 建, 薛俊明, 赵 颖, 耿新华. 相变域硅薄膜材料的光稳定性.  , 2006, 55(2): 947-951. doi: 10.7498/aps.55.947
计量
  • 文章访问数:  6425
  • PDF下载量:  424
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-08
  • 修回日期:  2013-03-11
  • 刊出日期:  2013-07-05

/

返回文章
返回
Baidu
map