搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hagena团簇尺度定律中锥形喷嘴的等效孔径

陈光龙 徐红霞 任莉 汪丽莉 曹云玖 张修丽 平云霞 Dong Eon Kim

引用本文:
Citation:

Hagena团簇尺度定律中锥形喷嘴的等效孔径

陈光龙, 徐红霞, 任莉, 汪丽莉, 曹云玖, 张修丽, 平云霞, Dong Eon Kim

The equivalent diameter of conical nozzle in Hagena scaling laws

Chen Guang-Long, Xu Hong-Xia, Ren Li, Wang Li-Li, Cao Yun-Jiu, Zhang Xiu-Li, Ping Yun-Xia, Dong Eon Kim
PDF
导出引用
  • 本文首先详细重演了锥形喷嘴的等效孔径deq, 并根据deq的定义给出了它与气体团簇喷流的径向宽度之间的依赖关系. 然后以高背压氩气团簇喷流为例, 通过成像喷流的Rayleigh 散射光的空间分布研究了不同背压下喷流的径向宽度, 并与Hagena 团簇尺度定律中直线流模型假设的喷流径向宽度进行了比较. 结果表明, Hagena 直线流模型假设的喷流径向宽度小于实际的径向宽度, 且实际宽度与气体背压有关. 进一步的研究表明, 直线流模型对喷流宽度的估计偏差导致对锥形喷嘴等效孔径的估计偏差, 这为Hagena 尺度定律估计团簇平均尺寸的偏差给出了一种可能的解释.
    The cluster size is an important parameter in the study on the interaction of intense laser pulse with cluster jet produced by the gas adiabatic expansion through a nozzle into vacuum. The Hagena scaling law is usually used to estimate the average cluster size. However, there is the deviation of average cluster size from the prediction by the scaling law in the case that the conical nozzle is used at the high gas backing pressure. In this work, firstly the equivalent diameter of conical nozzle is re-calculated in detail, and then the relation between deq and the radial dimension of the cluster jet is obtained. As an example, the images of Rayleigh scattering light by argon cluster jet at different backing pressures are recorded to investigate the dimensions of cluster jet. And then the corresponding theoretical dimensions based on the idealized straight streamline model in the scaling law are compared with the experimental dimensions. It is found that the experimental dimension is larger than the theoretical one, and is related to the gas backing pressure. This under-estimation of theoretical cluster jet dimension leads to the over-estimation of the equivalent diameter of conical nozzle which is responsible for the cluster size deviation in Hagena scaling laws.
    • 基金项目: 上海市科学技术委员会(批准号: 11ZR1414500)和上海市教委科技创新项目(批准号: 11YZ216)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Shanghai, China (Grant No. 11ZR1414500), and the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 11YZ216).
    [1]

    Shao Y L, Ditmire T, Tisch J W G, Springate E, Marangos J P, Hutchinson M H R 1996 Phys. Rev. Lett. 77 3343

    [2]

    Ditmire T, Tisch J W G, Springate E, Mason M B, Hay N, Smith R A, Marangos J, Hutchinson M H R 1997 Nature 386 54

    [3]

    McPherson A, Thompson B D, Borisov A B, Boyer K, Rhodes C K 1994 Nature 370 631

    [4]

    Zweiback J, Cowan T E, Hartley J H, Howell R, Wharton K B, Crane J K, Yanovsky V P, Hays G, Smith R A, Ditmire T 2002 Phys. Plasmas 9 3108

    [5]

    Ditmire T, Zweiback J, Yanovsky V P, Cowan T E, Hays G, Wharton K B 1999 Nature 398 489

    [6]

    Fukuda Y, Faenov A Ya, Tampo M, Pikuz T A, Nakamura T, Kando M, Hayashi Y, Yogo A, Sakaki H, Kameshima T, Pirozhkov A S, Ogura K, Mori M, Esirkepov T Zh, Koga J, Boldarev A S, Gasilov V A, Magunov A I, Yamauchi T, Kodama R, Bolton P R, Kato Y, Tajima T, Daido H, Bulanov S V 2009 Phys. Rev. Lett. 103 165002

    [7]

    Kumarappan V, Kim K Y, Milchberg H M 2005 Phys. Rev. Lett. 94 205004

    [8]

    Mohamed T W, Chen G L, Kim J, Geng X T, Ahn J, Kim D E 2011 Opt. Express 19 15919

    [9]

    Chen G L, Geng X T, Mohamed T W, Xu H X, Mi Y M, Kim J, Kim D E 2012 Opt. Commu. 285 2627

    [10]

    Hagena O F 1992 Rev. Sci. Instrum. 63 2374

    [11]

    Hagena O F 1981 Surf. Sci. 106 101

    [12]

    Pauly H 2000 Atom Molecule and cluster Beams I (Springer-verlag Berlin Heidelberg New York) p81-85

    [13]

    Scoles G 1988 Atomic and Molecular Beam Methods (New York: Oxford University Press) p22

    [14]

    Smith R A, Ditmire T, Tisch J W G 1998 Rev. Sci. Instrum. 69 3798

    [15]

    Kim K Y, Kumarappan V, Michberg H M 2003 Appl. Phys. Lett. 83 3210

    [16]

    DeArmond F M, Suelzer J, Masters M F 2008 J. Appl. Phys. 103 093509

    [17]

    Dorchies F, Blasco F, Caillaud T, Stevefelt J, Stenz C, Boldarev A S, Gasilov, V A 2003 Phys. Rev. A 68 023201

    [18]

    Lu H Y, Ni G Q, Li R X, Xu Z Z 2010 J. Chem. Phys. 132 124303

    [19]

    Chen G L, Kim B, Ahn B, Kim D E 2010 J. Appl. Phys. 108 064329

    [20]

    Fu P T, Han J F, Mou Y H, Han D, Yang C W 2011 Acta Phys.Sin. 60 053602 (in Chinese) [付鹏涛, 韩纪锋, 牟艳红, 韩丹, 杨朝文 2011 60 053602]

    [21]

    Gao X, Wang X, Shim B, Arefiev A V, Korzekwa R, Downer M C 2012 Appl. Phys. Lett. 100 064101

  • [1]

    Shao Y L, Ditmire T, Tisch J W G, Springate E, Marangos J P, Hutchinson M H R 1996 Phys. Rev. Lett. 77 3343

    [2]

    Ditmire T, Tisch J W G, Springate E, Mason M B, Hay N, Smith R A, Marangos J, Hutchinson M H R 1997 Nature 386 54

    [3]

    McPherson A, Thompson B D, Borisov A B, Boyer K, Rhodes C K 1994 Nature 370 631

    [4]

    Zweiback J, Cowan T E, Hartley J H, Howell R, Wharton K B, Crane J K, Yanovsky V P, Hays G, Smith R A, Ditmire T 2002 Phys. Plasmas 9 3108

    [5]

    Ditmire T, Zweiback J, Yanovsky V P, Cowan T E, Hays G, Wharton K B 1999 Nature 398 489

    [6]

    Fukuda Y, Faenov A Ya, Tampo M, Pikuz T A, Nakamura T, Kando M, Hayashi Y, Yogo A, Sakaki H, Kameshima T, Pirozhkov A S, Ogura K, Mori M, Esirkepov T Zh, Koga J, Boldarev A S, Gasilov V A, Magunov A I, Yamauchi T, Kodama R, Bolton P R, Kato Y, Tajima T, Daido H, Bulanov S V 2009 Phys. Rev. Lett. 103 165002

    [7]

    Kumarappan V, Kim K Y, Milchberg H M 2005 Phys. Rev. Lett. 94 205004

    [8]

    Mohamed T W, Chen G L, Kim J, Geng X T, Ahn J, Kim D E 2011 Opt. Express 19 15919

    [9]

    Chen G L, Geng X T, Mohamed T W, Xu H X, Mi Y M, Kim J, Kim D E 2012 Opt. Commu. 285 2627

    [10]

    Hagena O F 1992 Rev. Sci. Instrum. 63 2374

    [11]

    Hagena O F 1981 Surf. Sci. 106 101

    [12]

    Pauly H 2000 Atom Molecule and cluster Beams I (Springer-verlag Berlin Heidelberg New York) p81-85

    [13]

    Scoles G 1988 Atomic and Molecular Beam Methods (New York: Oxford University Press) p22

    [14]

    Smith R A, Ditmire T, Tisch J W G 1998 Rev. Sci. Instrum. 69 3798

    [15]

    Kim K Y, Kumarappan V, Michberg H M 2003 Appl. Phys. Lett. 83 3210

    [16]

    DeArmond F M, Suelzer J, Masters M F 2008 J. Appl. Phys. 103 093509

    [17]

    Dorchies F, Blasco F, Caillaud T, Stevefelt J, Stenz C, Boldarev A S, Gasilov, V A 2003 Phys. Rev. A 68 023201

    [18]

    Lu H Y, Ni G Q, Li R X, Xu Z Z 2010 J. Chem. Phys. 132 124303

    [19]

    Chen G L, Kim B, Ahn B, Kim D E 2010 J. Appl. Phys. 108 064329

    [20]

    Fu P T, Han J F, Mou Y H, Han D, Yang C W 2011 Acta Phys.Sin. 60 053602 (in Chinese) [付鹏涛, 韩纪锋, 牟艳红, 韩丹, 杨朝文 2011 60 053602]

    [21]

    Gao X, Wang X, Shim B, Arefiev A V, Korzekwa R, Downer M C 2012 Appl. Phys. Lett. 100 064101

  • [1] 张春艳. H离子团簇高次谐波平台展宽与团簇膨胀.  , 2023, 72(21): 214203. doi: 10.7498/aps.72.20230534
    [2] VasiliyPelenovich, 曾晓梅, 罗进宝, RakhimRakhimov, 左文彬, 张翔宇, 田灿鑫, 邹长伟, 付德君, 杨兵. 气体团簇离子束两步能量修形法的平坦化效应.  , 2021, 70(5): 053601. doi: 10.7498/aps.70.20201454
    [3] 罗进宝, VasiliyPelenovich, 曾晓梅, 郝中华, 张翔宇, 左文彬, 付德君. 离子剂量比在气体团簇多级能量平坦化模式中的作用.  , 2021, 70(22): 223601. doi: 10.7498/aps.70.20202011
    [4] 曾晓梅, VasiliyPelenovich, RakhimRakhimov, 左文彬, 邢斌, 罗进宝, 张翔宇, 付德君. 气体团簇离子束装置的设计及其在表面平坦化、自组装纳米结构中的应用.  , 2020, 69(9): 093601. doi: 10.7498/aps.69.20191990
    [5] 王花, 陈琼, 王文广, 厚美瑛. 颗粒气体团簇行为实验研究.  , 2016, 65(1): 014502. doi: 10.7498/aps.65.014502
    [6] 李家琨, 王霞, 金伟其, 张旭. 最小可分辨气体浓度的等效测试评价方法.  , 2015, 64(16): 160701. doi: 10.7498/aps.64.160701
    [7] 赵家瑞, 李毅飞, 马景龙, 王进光, 黄开, 韩玉晶, 马勇, 闫文超, 李大章, 袁大伟, 李玉同, 张杰, 陈黎明. 常温下氙气以及氢氙混合气体形成的团簇的特性研究.  , 2015, 64(4): 042101. doi: 10.7498/aps.64.042101
    [8] 徐逸, A. S. Boldarev, Dong Eon Kim, 陈光龙. 高背压超声气体团簇喷流中团簇平均尺寸沿喷流方向演化研究.  , 2015, 64(1): 013601. doi: 10.7498/aps.64.013601
    [9] 王龙, 郭尔夫, 韩纪锋, 刘建波, 李永青, 周荣, 杨朝文. 静态真空对超声喷流气体团簇制备的实验研究.  , 2014, 63(20): 203601. doi: 10.7498/aps.63.203601
    [10] 冯黛丽, 冯妍卉, 张欣欣. 小尺寸铝纳米团簇的相变行为.  , 2013, 62(8): 083602. doi: 10.7498/aps.62.083602
    [11] 郭钊, 陆斌, 蒋雪, 赵纪军. 幻数尺寸Li-n-1,Lin,Li+ n+1(n=20,40)团簇的几何结构、电子与光学性质的第一性原理研究.  , 2011, 60(1): 013601. doi: 10.7498/aps.60.013601
    [12] 张林, 徐送宁, 李蔚, 孙海霞, 张彩碚. 小尺寸铜团簇冷却与并合过程中结构变化的原子尺度研究.  , 2009, 58(13): 58-S66. doi: 10.7498/aps.58.58
    [13] 刘猛, 陆建峰, 韩纪峰, 李佳, 罗小兵, 缪竞威, 师勉恭, 杨朝文. 超声喷流Ar团簇生长演化过程及团簇尺寸轴向分布的实验研究.  , 2009, 58(10): 6951-6955. doi: 10.7498/aps.58.6951
    [14] 杨 明, 刘建胜, 蔡 懿, 王文涛, 王 成, 倪国权, 李儒新, 徐至展. 低密度大尺寸团簇形成的诊断研究.  , 2008, 57(1): 176-180. doi: 10.7498/aps.57.176
    [15] 王思胜, 孔蕊弘, 田振玉, 单晓斌, 张允武, 盛六四, 王振亚, 郝立庆, 周士康. Ar?NO团簇的同步辐射光电离研究.  , 2006, 55(7): 3433-3437. doi: 10.7498/aps.55.3433
    [16] 杨建宋, 李宝兴. 砷化镓离子团簇的稳定性研究.  , 2006, 55(12): 6562-6569. doi: 10.7498/aps.55.6562
    [17] 郭建军, 杨继先, 迭 东, 于桂凤, 蒋 刚. Pd-Y微团簇的结构与性质研究.  , 2005, 54(8): 3571-3577. doi: 10.7498/aps.54.3571
    [18] 毛华平, 杨兰蓉, 王红艳, 朱正和, 唐永建. 钇小团簇的结构和电离势的计算.  , 2005, 54(11): 5126-5129. doi: 10.7498/aps.54.5126
    [19] 李邵辉, 王 成, 刘建胜, 王向欣, 李儒新, 倪国权, 徐至展. 飞秒强激光场中大尺寸氩团簇爆炸机理的实验研究.  , 2005, 54(2): 636-641. doi: 10.7498/aps.54.636
    [20] 刘建胜, 李儒新, 朱频频, 徐至展, 刘晶儒. 大尺寸团簇在超短超强激光场中的动力学行为.  , 2001, 50(6): 1121-1127. doi: 10.7498/aps.50.1121
计量
  • 文章访问数:  6467
  • PDF下载量:  370
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-02
  • 修回日期:  2013-03-24
  • 刊出日期:  2013-07-05

/

返回文章
返回
Baidu
map