搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mo, Ta, W在NixAl1-x(x=0.25,0.5,0.75) 中的择优占位

王芳 张建民 薛红

引用本文:
Citation:

Mo, Ta, W在NixAl1-x(x=0.25,0.5,0.75) 中的择优占位

王芳, 张建民, 薛红

Site-preference of Mo/Ta/W alloying additions in NixAl1-x(x=0.25,0.5,0.75)

Wang Fang, Zhang Jian-Min, Xue Hong
PDF
导出引用
  • 用多体势结合分子动力学计算了L12型NiAl3, L12型Ni3Al, L10型NiAl和B2 型NiAl的晶格常数, 结合能以及合金形成热; 分析了结构性点缺陷在上述四种合金中的存在形式; 在此基础上研究了合金化元素Mo, Ta, W在NixAl1-x(x=0.25,0.5,0.75)中的择优占位行为. 计算结果表明: 对于四种结构的Ni-Al合金, 偏离理想化学配比时,主要的结构缺陷形式是反位置; 根据占位能最小化, 第三组元元素Mo, Ta, W在上述四种Ni-Al中都显著优先占据Al格位.
    The characteristic properties including equilibrium lattice constants, elastic constants, cohesive energies and alloy formation energies, of stoichiometric L12 type NiAl3, L12 type Ni3Al, L10 type NiAl and B2 type NiAl, are calculated using a constructed n-body potential model combined with molecular dynamics. Furthermore, the types of point defects in the ordered NixAl1-x (x=0.25, 0.5, 0.75) systems in the nonstoichiometric case are discussed, to validate the model. The present calculation shows that the point defects are the antisites. It is in good agreement with other investigations. Then the n-body potential calculations are performed to investigate the site preference of ternary elements Mo/Ta/W alloying additions in the NixAl1-x systems. The occupation site of the ternary elements are analyzed based on the occupational energy minimizing. And the results show obviously that the occupational sites of Mo/Ta/W are the Al site.
    • 基金项目: 国家自然科学基金(批准号: 51071098)和陕西省教育厅项目(批准号: 12JK0991, 12JK0989)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51071098), and the Education Department of Shaanxi province, China ( Grant Nos. 12JK0991, 12JK0989).
    [1]

    Lazar P, Podloucky R 2006 Phys. Rev. B 73 104114

    [2]

    Liu C T, Horton J A 1995 Mater Sci. Eng. A 395 192

    [3]

    Yu S, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 3212 (in Chinese) [于松, 王崇愚, 于涛 2007 56 3212]

    [4]

    Anderson I M, Duncan A J, Bentley J 1999 Intermetallics 7 1017

    [5]

    Chao J 2007 Acta Mater 55 4799

    [6]

    Bozzolo G, Noebe R D, Honecy F 2000 Intermetallics 8 7

    [7]

    Jiang C, Sordelet D J, Gleeson B 2006 Scripta Materialia 54 405

    [8]

    Song Y, Guo Z X, Yang R, Li D 2001 Acta Mater. 49 1647

    [9]

    Allaverdoba N V, Portnoy V K, Kucherenko L A, Ruban A V, Bogdanov V I 1988 J Less-Common Metals 141 191

    [10]

    Terada Y, Ohkubo K, Mohri T, Suzuki T 2002 Mater. Sci. Eng. A 329 468

    [11]

    Cai J, Ye Y Y 1996 Phys. Rev. B 54 8398

    [12]

    Johnson R A 1989 Phys. Rev. B 39 12554

    [13]

    Gong H R, Kong L T, Liu B X 2004 Phys. Rev. B 69 024202

    [14]

    Gong H R, Kong L T, Lai W S, Liu B X 2002 Phys. Rev. B 66 104204

    [15]

    Zhang R F, Kong L T, Gong H R, Liu B X 2004 J. Phys. Condens. Matter 16 5251

    [16]

    Liu Y X, Wang X, Ma Y Q, Zhang C H 2008 Acta Phys. Sin. 57 0358 (in Chinese) [刘艳侠, 王逊, 马永庆, 张程华 2008 57 0358]

    [17]

    Smithells C J 1976 Metal Reference Book 5th (London: Butterworths) p136

    [18]

    Villas P, Calvert L 1991 Pearson's Handbook of Crystallographic Data for Intermetallic Phases, 2nd (ASM International, Materials Park, OH) p328

    [19]

    Hultgren R, Desai P D, Hawkins D T, Gleiser N, Kelly K K 1973 Selected Values of Thermodynamic Properties of Binary Alloys (ASM Matals Park OH) p253

    [20]

    Song X L, Zhang J M, Xu K W 2007 J. Alloys and Compounds 436 23

    [21]

    Wurschum R, Badura-Gergen K, Kummerle E A, Grupp C, Schaefer H E 1996 Phys. Rev. B 54 849

    [22]

    Pike L M, Chang Y A, Liu C T 1997 Acta. Mater. 45 3707

    [23]

    Meyer B, Fahnle M 1999 Phys. Rev. B 59 6072

    [24]

    Jiang C, Besser M F, Sordelet D J, Gleeson B 2005 Acta. Mater. 53 2101

    [25]

    Farkas D, Mutasa B, Vailhe C, Ternes K 1995 Modeling Simul. Mater. Sci. Eng. 8 201

    [26]

    Wurschum R, Grupp C, Schaefer H E 1995 Phys. Rev. Lett. 75 97

    [27]

    Kitte C 2005 Introduction of solid state physics 8th (New York: Wiley)

    [28]

    Hao Y L, Yang R, Song Y 2004 Mater Sci. Eng. A 365 85

    [29]

    Chiba A, Shindo D, Hanada S 1991 Acta Mater. 39 13

  • [1]

    Lazar P, Podloucky R 2006 Phys. Rev. B 73 104114

    [2]

    Liu C T, Horton J A 1995 Mater Sci. Eng. A 395 192

    [3]

    Yu S, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 3212 (in Chinese) [于松, 王崇愚, 于涛 2007 56 3212]

    [4]

    Anderson I M, Duncan A J, Bentley J 1999 Intermetallics 7 1017

    [5]

    Chao J 2007 Acta Mater 55 4799

    [6]

    Bozzolo G, Noebe R D, Honecy F 2000 Intermetallics 8 7

    [7]

    Jiang C, Sordelet D J, Gleeson B 2006 Scripta Materialia 54 405

    [8]

    Song Y, Guo Z X, Yang R, Li D 2001 Acta Mater. 49 1647

    [9]

    Allaverdoba N V, Portnoy V K, Kucherenko L A, Ruban A V, Bogdanov V I 1988 J Less-Common Metals 141 191

    [10]

    Terada Y, Ohkubo K, Mohri T, Suzuki T 2002 Mater. Sci. Eng. A 329 468

    [11]

    Cai J, Ye Y Y 1996 Phys. Rev. B 54 8398

    [12]

    Johnson R A 1989 Phys. Rev. B 39 12554

    [13]

    Gong H R, Kong L T, Liu B X 2004 Phys. Rev. B 69 024202

    [14]

    Gong H R, Kong L T, Lai W S, Liu B X 2002 Phys. Rev. B 66 104204

    [15]

    Zhang R F, Kong L T, Gong H R, Liu B X 2004 J. Phys. Condens. Matter 16 5251

    [16]

    Liu Y X, Wang X, Ma Y Q, Zhang C H 2008 Acta Phys. Sin. 57 0358 (in Chinese) [刘艳侠, 王逊, 马永庆, 张程华 2008 57 0358]

    [17]

    Smithells C J 1976 Metal Reference Book 5th (London: Butterworths) p136

    [18]

    Villas P, Calvert L 1991 Pearson's Handbook of Crystallographic Data for Intermetallic Phases, 2nd (ASM International, Materials Park, OH) p328

    [19]

    Hultgren R, Desai P D, Hawkins D T, Gleiser N, Kelly K K 1973 Selected Values of Thermodynamic Properties of Binary Alloys (ASM Matals Park OH) p253

    [20]

    Song X L, Zhang J M, Xu K W 2007 J. Alloys and Compounds 436 23

    [21]

    Wurschum R, Badura-Gergen K, Kummerle E A, Grupp C, Schaefer H E 1996 Phys. Rev. B 54 849

    [22]

    Pike L M, Chang Y A, Liu C T 1997 Acta. Mater. 45 3707

    [23]

    Meyer B, Fahnle M 1999 Phys. Rev. B 59 6072

    [24]

    Jiang C, Besser M F, Sordelet D J, Gleeson B 2005 Acta. Mater. 53 2101

    [25]

    Farkas D, Mutasa B, Vailhe C, Ternes K 1995 Modeling Simul. Mater. Sci. Eng. 8 201

    [26]

    Wurschum R, Grupp C, Schaefer H E 1995 Phys. Rev. Lett. 75 97

    [27]

    Kitte C 2005 Introduction of solid state physics 8th (New York: Wiley)

    [28]

    Hao Y L, Yang R, Song Y 2004 Mater Sci. Eng. A 365 85

    [29]

    Chiba A, Shindo D, Hanada S 1991 Acta Mater. 39 13

  • [1] 李育川, 郝刚领, 王金, 王伟国, 王新福, 汪聃. 烧结过程中Ni-Al金属间化合物形成的内耗.  , 2021, 70(5): 056102. doi: 10.7498/aps.70.20201422
    [2] 田晓林, 赵宇宏, 田晋忠, 侯华. 原子间相互作用势对中Al浓度Ni75AlxV25-x合金沉淀序列的影响.  , 2018, 67(23): 230201. doi: 10.7498/aps.67.20181366
    [3] 李守英, 王勇, 赵卫民. 单轴应变对H在α-Fe中占位及扩散的影响.  , 2017, 66(18): 187101. doi: 10.7498/aps.66.187101
    [4] 辛月朋, 马悦兴, 郝红月, 孟凡斌, 刘何燕, 罗鸿志. 等价电子数组元Heusler合金Fe2RuSi中的原子占位.  , 2016, 65(14): 147102. doi: 10.7498/aps.65.147102
    [5] 于智清, 王逊, 刘艳侠, 王梅, 杨合, 薛向欣. α-B晶体的Lennard-Jones对势和对势型多体势构建.  , 2015, 64(10): 103401. doi: 10.7498/aps.64.103401
    [6] 张媛媛, 林鑫, 杨海欧, 李加强, 任永明. 粉末状态对激光立体成形Zr55Cu30Al10Ni5块体非晶合金晶化行为的影响.  , 2015, 64(16): 166402. doi: 10.7498/aps.64.166402
    [7] 李铁军, 孙跃, 郑骥文, 邵桂芳, 刘暾东. 基于遗传算法的Au-Cu-Pt三元合金纳米粒子的稳定结构研究.  , 2015, 64(15): 153601. doi: 10.7498/aps.64.153601
    [8] 邵桂芳, 郑文馨, 涂娜娜, 刘暾东, 文玉华. 高指数晶面Au-Pd纳米合金粒子的稳定结构研究.  , 2015, 64(1): 013602. doi: 10.7498/aps.64.013602
    [9] 文平, 李春福, 赵毅, 张凤春, 童丽华. Cr,Mo,Ni在α-Fe(C)中占位、键合性质及合金化效应的第一性原理研究.  , 2014, 63(19): 197101. doi: 10.7498/aps.63.197101
    [10] 陈丽群, 于涛, 彭小芳, 刘健. 难熔元素钨在NiAl位错体系中的占位及对键合性质的影响.  , 2013, 62(11): 117101. doi: 10.7498/aps.62.117101
    [11] 金宝, 蔡军, 陈义学. 放射性核素铀在针铁矿中的占位研究.  , 2013, 62(8): 087101. doi: 10.7498/aps.62.087101
    [12] 胡勇, 闫红红, 林 涛, 李金富, 周尧和. 退火态Zr55Al10Ni5Cu30块体非晶合金在轧制过程中的自由体积演化.  , 2012, 61(8): 087102. doi: 10.7498/aps.61.087102
    [13] 陈剑辉, 刘保亭, 赵庆勋, 崔永亮, 赵冬月, 郭哲. 含铜铁电电容器SrRuO3/Pb(Zr0.4Ti0.6)O3/SrRuO3/Ni-Al/Cu/Ni-Al/SiO2/Si异质结的研究.  , 2011, 60(11): 117701. doi: 10.7498/aps.60.117701
    [14] 尚家香, 喻显扬. 3d过渡金属在NiAl中的占位及对键合性质的影响.  , 2008, 57(4): 2380-2385. doi: 10.7498/aps.57.2380
    [15] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究.  , 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [16] 于 松, 王崇愚, 于 涛. 嵌入原子法研究Ni3Al中点缺陷以及Re择优占位和集团化.  , 2007, 56(6): 3212-3218. doi: 10.7498/aps.56.3212
    [17] 王藩侯, 杨传路, 李西军, 经福谦. 液氩多体作用势研究及其Hugoniot曲线的分子动力学模拟  .  , 2000, 49(1): 114-118. doi: 10.7498/aps.49.114
    [18] 王仁智, 黄美纯. 四面体键半导体合金LMTO能带的相干势近似计算.  , 1988, 37(10): 1585-1592. doi: 10.7498/aps.37.1585
    [19] 梁金忠, 赖宗和, 吴玉琨, 郭可信. 非晶Ni-P合金晶化过程中生成的六角亚稳相(Ⅲ)——六角多型体.  , 1984, 33(7): 1037-1039. doi: 10.7498/aps.33.1037
    [20] 戴礼智, 王俊健, 侯德惠. Ni—Fe—Nb及Ni—Fe—Nb—Al合金磁性和结构的初步研究.  , 1978, 27(3): 260-268. doi: 10.7498/aps.27.260
计量
  • 文章访问数:  5337
  • PDF下载量:  414
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-05
  • 修回日期:  2013-03-14
  • 刊出日期:  2013-07-05

/

返回文章
返回
Baidu
map