搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气体团簇离子束装置的设计及其在表面平坦化、自组装纳米结构中的应用

曾晓梅 VasiliyPelenovich RakhimRakhimov 左文彬 邢斌 罗进宝 张翔宇 付德君

引用本文:
Citation:

气体团簇离子束装置的设计及其在表面平坦化、自组装纳米结构中的应用

曾晓梅, VasiliyPelenovich, RakhimRakhimov, 左文彬, 邢斌, 罗进宝, 张翔宇, 付德君

Design and application of gas cluster accelerator for surface smoothing and nanostructures formation

Zeng Xiao-Mei, Vasiliy Pelenovich, Rakhim Rakhimov, Zuo Wen-Bin, Xing Bin, Luo Jin-Bao, Zhang Xiang-Yu, Fu De-Jun
PDF
HTML
导出引用
  • 根据超声膨胀原理, n (10—104)个气体原子可以绝热冷却后凝聚在一起形成团簇, 经过离化后, 形成带一个电荷量的团簇离子, 比如${\rm{Ar}}_n^ + $. 当团簇离子与固体材料相互作用时, 由于平均每个原子携带的能量(~ eV)较低, 仅作用于材料浅表面区域, 因此, 气体团簇离子束是材料表面改性的优良选择. 本文介绍了一台由武汉大学加速器实验室自主研制的气体团簇离子束装置, 包括整体构造、工作原理及实验应用. 中性团簇束由金属锥形喷嘴(Φ = 65—135 μm, θ = 14°)形成, 平均尺寸为3000 atoms/cluster, 经离化后, 其离子束流达到了50 μA. Ar团簇离子因其反应活性较低, 本文运用Ar团簇离子(平均尺寸为1000 atoms/cluster)进行了平坦化和自组装纳米结构的研究. 单晶硅片经Ar团簇离子束处理后, 均方根粗糙度由初始的1.92 nm降低到0.5 nm, 同时观察到了束流的清洁效应. 利用Ar团簇离子束的倾斜(30°—60°)轰击, 在宽大平坦的单晶ZnO基片上形成了纳米波纹, 而在ZnO纳米棒表面则形成了有序的纳米台阶, 同时, 利用二维功率谱密度函数分析了纳米结构在基片上的表面形貌和特征分布, 并计算了纳米波纹的尺寸和数量.
    A custom-built gas cluster ion source with energy up to 50 keV is constructed, and Ar, CO2, N2, and O2 are used as the working gases. The clusters are formed by a metal supersonic conical nozzle with critical diameter in a range of 65–135 μm and a cone angle of 14°. The nozzle is powered in the pulsed mode, which improves the pumping conditions, and also makes it possible to increase the gas pressure in the stagnation zone to 15 atm and thereby obtain larger clusters. Based on the principle of ultrasonic expansion, gas cluster ions with an average size of 3000 atoms are obtained. The cluster beam current of 50 μA is obtained. The Ar cluster beam, which is less reactive, is used for treating surface, namely, surface smoothing and formation of self-assembled nanostructures. The Ar cluster bombardment perpendicular to the surface of the substrate is used to demonstrate the smoothing of the surface of Si wafers, Ti coating, and Au film. For the initial Si wafer, its root-mean-square (RMS) roughness of 1.92 nm decreases down to 0.5 nm after cluster beam treatment. The cleaning effect of the cluster beam is also observed very well. The one-dimensional (1D) isotropic power spectral density of the Si surface topography before and after smoothing are also discussed. The off-normal irradiation Ar cluster beam is also used to form self-assembled surface nanoripple arrays on the surface of flat ZnO single crystal substrates. The ripple formation is observed when the incident angle of the cluster beam is in a range of 30°–60°. The process of nanoripple fabrication is significantly governed by the cluster beam incident angle, energy and dose. The nano-ripples formed on the flat substrates remain eolian sand ripples and their formation starts at the incident angle of 30°. The most developed nanoripples are observed at the incident angle within a range of 45°–60°. The surface morphology and characteristic distribution of the nano-structures on the flat ZnO substrate are also analyzed by the two-dimensional (2D) power spectral density function. Next, Ar cluster beam is used for irradiating the ZnO nanorod arrays grown on the Si substrate. Due to various angles between the nanorod’s axis and the substrate normal, the conditions of the ripple formation on the nanorod facets are also realized. The dependence of wavelength on the accelerating voltage of the cluster ions and the dose are studied. Similar dependence of wavelength on accelerating voltage and dose are found for nanorods. Comparing with the flat ZnO surface, nanoripples on the ZnO nanorod faces at high irradiation doses demonstrate an ordering effect, and morphology of the ripples resembles that of more parallel steps rather than eolian ripples.
      通信作者: 曾晓梅, 1714399588@qq.com ; VasiliyPelenovich, pelenovich@mail.ru ; 付德君, djfu@whu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11875210)和广东省自然科学基金(批准号: 2018A050506082)资助的课题
      Corresponding author: Zeng Xiao-Mei, 1714399588@qq.com ; Vasiliy Pelenovich, pelenovich@mail.ru ; Fu De-Jun, djfu@whu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11875210)and the Science and Technology Planning Project of Guangdong Province, China(Grant No. 2018A050506082)
    [1]

    Yamada I, Matsuo J, Toyoda N, Kirkpatrick A 2001 Mater. Sci. Eng., R 34 231Google Scholar

    [2]

    郭尔夫, 韩纪锋, 李永青, 杨朝文, 周荣 2014 63 103601Google Scholar

    Guo E F, Han J F, Li Y Q, Yang C W, Zhou R 2014 Acta Phys. Sin. 63 103601Google Scholar

    [3]

    Becker E W, Bier K, Henkes W 1956 Z. Phys. 146 333Google Scholar

    [4]

    Matsuo J, Abe H, Takaoka G H, Yamada I 1995 Nucl. Instrum. Meth. B 99 244Google Scholar

    [5]

    Yamada I, Matsuo J, Insepov Z, Takeuchi D, Akizuki M, Toyoda N 1996 J. Vac. Sci. Technol., A 14 781Google Scholar

    [6]

    Yamada I, Matsuo J 1998 Mater. Sci. Semicond. Process. 1 27Google Scholar

    [7]

    Song J H, Kwon S N, Choi D K, Choi W K 2001 Nucl. Instrum. Meth. B 179 568Google Scholar

    [8]

    Andreev A A, Chernysh V S, Ermakov Yu A, Ieshkin A E 2013 Vacuum 91 47Google Scholar

    [9]

    Kirkpatrick A, Greer J 1999 AIP Conf. Proc. 475 405

    [10]

    Qin W, Howson R P, Akizuki M, Matsuo J, Takaoka G, Yamada I 1998 Mater. Chem. Phys. 54 258Google Scholar

    [11]

    Nose T, Inoue S, Toyoda N, Mochiji K, Mitamura T, Yamada I 2005 Nucl. Instrum. Meth. B 241 626Google Scholar

    [12]

    Greer J A, Fenner D B, Hautala J, Allen L P, DiFilippo V, Toyoda N, Yamada I, Matsuo J, Minami E, Katsumata H 2000 Surf. Coat. Technol. 133 273Google Scholar

    [13]

    Toyoda N, Yamada I 2008 Nucl. Instrum. Methods B 266 2529Google Scholar

    [14]

    Lozano O, Chen Q Y, Tilakaratne B P, Seo H W, Wang X M, Wadekar P V, Chinta P V, Tu LW, Ho N J, Wijesundera D, Chu W K 2013 AIP Adv. 3 062107Google Scholar

    [15]

    Saleem I, Tilakaratne B P, Li Y, Bao J, Wijesundera D N, Chu W K 2016 Nucl. Instrum. Methods B 380 20Google Scholar

    [16]

    Bradley R M, Harper J M E 1988 J. Vac. Sci. Technol., A 6 2390Google Scholar

    [17]

    Motta F C, Shipman P D, Bradley R M 2012 J. Phys. D: Appl. Phys. 45 122001Google Scholar

    [18]

    Chao L C, Li Y K, Chang W C 2011 Mater. Lett. 65 1615Google Scholar

    [19]

    Babonneau D, Camelio S, Simonot L, Pailloux F, Guerin P, Lamongie B, Lyon O 2011 EPL 93 26005Google Scholar

    [20]

    Gkogkou D, Schreiber B, Shaykhutdinov T, Ly H K, Kuhlmann U, Gernert U, Facsko S, Hildebrandt P, Esser N, Hinrichs K, Weidinger I M, Oates T W H 2016 ACS Sens. 1 318Google Scholar

    [21]

    Arranz M A, Colino J M, Palomares F J 2014 J. Appl. Phys. 115 183906Google Scholar

    [22]

    Zhang K, Uhrmacher M, Hofsäss H, Krauser J 2008 J. Appl. Phys. 103 083507Google Scholar

    [23]

    Zeng X M, Pelenovich V, Liu C S, Fu D J 2017 Chin. Phys. C 41 087003Google Scholar

    [24]

    Zeng X M, Pelenovich V, Wang Z S, Zuo W B, Belykh S, Tolstogouzov A, Fu D J, Xiao X H 2019 Beilstein J. Nanotechnol. 10 135Google Scholar

    [25]

    瓦西里·帕里诺维奇, 曾晓梅, 付德君 2017 ZL 2017 1 0664910.3

    Pelenovich V, Zeng X M, Fu D J 2017 ZL2017 1 0664910.3 (in Chinese)

    [26]

    Pelenovich V, Zeng X M, Ieshkin A, Zuo W B, Chernysh V S, Tolstogouzov A B, Yang B, Fu D J 2019 Nucl. Instrum. Methods B 450 131Google Scholar

    [27]

    Pelenovich V O, Zeng X M, Ieshkin A E, Chernysh V S, Tolstogouzov A B, Yang B, Fu D J 2019 J. Surf. Invest. 13 344Google Scholar

    [28]

    Korobeishchikov N G, Nikolaev I V, Roenko M A 2019 Nucl. Instrum. Methods B 438 1Google Scholar

    [29]

    Ieshkin A, Kireev D, Chernysh V, Molchanov A, Serebryakov A, Chirkin M 2019 Surf. Topogr. Metrol. Prop. 7 025016Google Scholar

    [30]

    Insepov Z, Yamada I 1999 Nucl. Instrum. Methods B 148 121Google Scholar

    [31]

    Toyoda N, Hagiwara N, Matsuo J, Yamada I 2000 Nucl. Instrum. Methods B 161 980Google Scholar

    [32]

    Wang L, Kang Y, Liu X, Zhang S, Huang W, Wang S 2012 Sens. Actuators, B 162 237Google Scholar

    [33]

    Shinde S D, Patil G E, Kajale D D, Gaikwad V B, Jain G H 2012 J. Alloys Compd. 528 109Google Scholar

    [34]

    Inoue S, Toyoda N, Tsubakino H, Yamada I 2005 Nucl. Instrum. Methods B 237 449Google Scholar

    [35]

    Sumie K, Toyoda N, Yamada I 2013 Nucl. Instrum. Methods B 307 290Google Scholar

    [36]

    Insepov Z, Yamada I 1999 Nucl. Instrum. Methods B 153 199Google Scholar

    [37]

    Moseler M, Rattunde O, Nordiek J, Haberland H 2000 Nucl. Instrum. Methods B 164 522Google Scholar

    [38]

    Tilakaratne B P, Chen Q Y, Chu W K 2017 Materials 10 1056Google Scholar

    [39]

    Pelenovich V, Zeng X M, Rakhimov R, Zuo W B, Tian C X, Fu D J, Yang B 2020 Mater. Lett. 264 127356Google Scholar

  • 图 1  GCIB装置实物图

    Fig. 1.  Image of the GCIB accelerator.

    图 2  气体团簇离子加速器工作原理结构图

    Fig. 2.  Working principle and structure diagram of gas cluster ion accelerator.

    图 3  单晶硅片AFM表面形貌图 (a) 清洁前; (b) 化学法清洗后; (c) 团簇清洁后

    Fig. 3.  AFM surface topography of single crystal silicon wafer: (a) Before cleaning; (b) after chemical cleaning; (c) after cluster cleaning.

    图 4  单晶硅片清洁前后AFM图像对应的一维PSD曲线

    Fig. 4.  One dimensional PSD curves of AFM images of single crystal silicon wafer.

    图 5  在不同入射角下Ar GCIB辐照前后单晶ZnO基片的AFM图像(能量, 10 keV; 剂量, 4 × 1016 ions/cm2; 箭头表示离子束轰击方向) (a) 团簇辐照前; (b) 30°; (c) 45°; (d) 60°

    Fig. 5.  AFM images of single crystal ZnO substrates before and after Ar GCIB irradiation at different incident angles (energy, 10 keV; dose, 4 × 1016 ions/cm2; arrows indicate the direction of ion beam bombardment): (a) Before cluster irradiation; (b) 30°; (c) 45°; (d) 60°

    图 6  在不同入射角下Ar GCIB辐照单晶ZnO基片的二维PSD图像(能量, 10 keV; 剂量, 4 × 1016 ions/cm2; 箭头表示离子束轰击方向) (a) 团簇辐照前; (b) 30°; (c) 45°; (d) 60°

    Fig. 6.  Two-dimensional PSD images of single crystal ZnO substrates before and after Ar GCIB irradiation at different incident angles (energy, 10 keV; dose, 4 × 1016 ions/cm2; arrows indicate the direction of ion beam bombardment): (a) Before cluster irradiation; (b) 30°; (c) 45°; (d) 60°.

    图 7  经不同团簇能量、剂量改性前后ZnO纳米棒的SEM图像 (a) 团簇辐照前; (b) 5 keV, 4 × 1016 ions/cm2; (c) 10 keV, 2 × 1016 ions/cm2; (d) 10 keV, 4 × 1016 ions/cm2

    Fig. 7.  SEM images of ZnO nanorods before and after Ar GCIB irradiation at different cluster energy and dose: (a) Before cluster irradiation; (b) 5 keV, 4 × 1016 ions/cm2; (c) 10 keV, 2 × 1016 ions/cm2; (d) 10 keV, 4 × 1016 ions/cm2.

    表 1  根据二维PSD计算的纳米波纹波长和数量

    Table 1.  Wavelength and number of nanowaves calculated from two-dimensional PSD.

    入射角
    30°45°60°
    y y x y
    最强频率/μm–12624
    波纹波长λ/μm0.50.1670.50.25
    平均波纹数量N10301020
    下载: 导出CSV
    Baidu
  • [1]

    Yamada I, Matsuo J, Toyoda N, Kirkpatrick A 2001 Mater. Sci. Eng., R 34 231Google Scholar

    [2]

    郭尔夫, 韩纪锋, 李永青, 杨朝文, 周荣 2014 63 103601Google Scholar

    Guo E F, Han J F, Li Y Q, Yang C W, Zhou R 2014 Acta Phys. Sin. 63 103601Google Scholar

    [3]

    Becker E W, Bier K, Henkes W 1956 Z. Phys. 146 333Google Scholar

    [4]

    Matsuo J, Abe H, Takaoka G H, Yamada I 1995 Nucl. Instrum. Meth. B 99 244Google Scholar

    [5]

    Yamada I, Matsuo J, Insepov Z, Takeuchi D, Akizuki M, Toyoda N 1996 J. Vac. Sci. Technol., A 14 781Google Scholar

    [6]

    Yamada I, Matsuo J 1998 Mater. Sci. Semicond. Process. 1 27Google Scholar

    [7]

    Song J H, Kwon S N, Choi D K, Choi W K 2001 Nucl. Instrum. Meth. B 179 568Google Scholar

    [8]

    Andreev A A, Chernysh V S, Ermakov Yu A, Ieshkin A E 2013 Vacuum 91 47Google Scholar

    [9]

    Kirkpatrick A, Greer J 1999 AIP Conf. Proc. 475 405

    [10]

    Qin W, Howson R P, Akizuki M, Matsuo J, Takaoka G, Yamada I 1998 Mater. Chem. Phys. 54 258Google Scholar

    [11]

    Nose T, Inoue S, Toyoda N, Mochiji K, Mitamura T, Yamada I 2005 Nucl. Instrum. Meth. B 241 626Google Scholar

    [12]

    Greer J A, Fenner D B, Hautala J, Allen L P, DiFilippo V, Toyoda N, Yamada I, Matsuo J, Minami E, Katsumata H 2000 Surf. Coat. Technol. 133 273Google Scholar

    [13]

    Toyoda N, Yamada I 2008 Nucl. Instrum. Methods B 266 2529Google Scholar

    [14]

    Lozano O, Chen Q Y, Tilakaratne B P, Seo H W, Wang X M, Wadekar P V, Chinta P V, Tu LW, Ho N J, Wijesundera D, Chu W K 2013 AIP Adv. 3 062107Google Scholar

    [15]

    Saleem I, Tilakaratne B P, Li Y, Bao J, Wijesundera D N, Chu W K 2016 Nucl. Instrum. Methods B 380 20Google Scholar

    [16]

    Bradley R M, Harper J M E 1988 J. Vac. Sci. Technol., A 6 2390Google Scholar

    [17]

    Motta F C, Shipman P D, Bradley R M 2012 J. Phys. D: Appl. Phys. 45 122001Google Scholar

    [18]

    Chao L C, Li Y K, Chang W C 2011 Mater. Lett. 65 1615Google Scholar

    [19]

    Babonneau D, Camelio S, Simonot L, Pailloux F, Guerin P, Lamongie B, Lyon O 2011 EPL 93 26005Google Scholar

    [20]

    Gkogkou D, Schreiber B, Shaykhutdinov T, Ly H K, Kuhlmann U, Gernert U, Facsko S, Hildebrandt P, Esser N, Hinrichs K, Weidinger I M, Oates T W H 2016 ACS Sens. 1 318Google Scholar

    [21]

    Arranz M A, Colino J M, Palomares F J 2014 J. Appl. Phys. 115 183906Google Scholar

    [22]

    Zhang K, Uhrmacher M, Hofsäss H, Krauser J 2008 J. Appl. Phys. 103 083507Google Scholar

    [23]

    Zeng X M, Pelenovich V, Liu C S, Fu D J 2017 Chin. Phys. C 41 087003Google Scholar

    [24]

    Zeng X M, Pelenovich V, Wang Z S, Zuo W B, Belykh S, Tolstogouzov A, Fu D J, Xiao X H 2019 Beilstein J. Nanotechnol. 10 135Google Scholar

    [25]

    瓦西里·帕里诺维奇, 曾晓梅, 付德君 2017 ZL 2017 1 0664910.3

    Pelenovich V, Zeng X M, Fu D J 2017 ZL2017 1 0664910.3 (in Chinese)

    [26]

    Pelenovich V, Zeng X M, Ieshkin A, Zuo W B, Chernysh V S, Tolstogouzov A B, Yang B, Fu D J 2019 Nucl. Instrum. Methods B 450 131Google Scholar

    [27]

    Pelenovich V O, Zeng X M, Ieshkin A E, Chernysh V S, Tolstogouzov A B, Yang B, Fu D J 2019 J. Surf. Invest. 13 344Google Scholar

    [28]

    Korobeishchikov N G, Nikolaev I V, Roenko M A 2019 Nucl. Instrum. Methods B 438 1Google Scholar

    [29]

    Ieshkin A, Kireev D, Chernysh V, Molchanov A, Serebryakov A, Chirkin M 2019 Surf. Topogr. Metrol. Prop. 7 025016Google Scholar

    [30]

    Insepov Z, Yamada I 1999 Nucl. Instrum. Methods B 148 121Google Scholar

    [31]

    Toyoda N, Hagiwara N, Matsuo J, Yamada I 2000 Nucl. Instrum. Methods B 161 980Google Scholar

    [32]

    Wang L, Kang Y, Liu X, Zhang S, Huang W, Wang S 2012 Sens. Actuators, B 162 237Google Scholar

    [33]

    Shinde S D, Patil G E, Kajale D D, Gaikwad V B, Jain G H 2012 J. Alloys Compd. 528 109Google Scholar

    [34]

    Inoue S, Toyoda N, Tsubakino H, Yamada I 2005 Nucl. Instrum. Methods B 237 449Google Scholar

    [35]

    Sumie K, Toyoda N, Yamada I 2013 Nucl. Instrum. Methods B 307 290Google Scholar

    [36]

    Insepov Z, Yamada I 1999 Nucl. Instrum. Methods B 153 199Google Scholar

    [37]

    Moseler M, Rattunde O, Nordiek J, Haberland H 2000 Nucl. Instrum. Methods B 164 522Google Scholar

    [38]

    Tilakaratne B P, Chen Q Y, Chu W K 2017 Materials 10 1056Google Scholar

    [39]

    Pelenovich V, Zeng X M, Rakhimov R, Zuo W B, Tian C X, Fu D J, Yang B 2020 Mater. Lett. 264 127356Google Scholar

  • [1] 廖晨, 姚宁, 唐路平, 施伟华, 孙少凌, 杨浩然. 基于硒化银量子点的近红外自组装激光器.  , 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231457
    [2] 王国建, 刘燕文, 李芬, 田宏, 朱虹, 李云, 赵恒邦, 王小霞, 张志强. 离子束表面处理对光电阴极发射的影响.  , 2021, 70(21): 218503. doi: 10.7498/aps.70.20210587
    [3] 罗进宝, VasiliyPelenovich, 曾晓梅, 郝中华, 张翔宇, 左文彬, 付德君. 离子剂量比在气体团簇多级能量平坦化模式中的作用.  , 2021, 70(22): 223601. doi: 10.7498/aps.70.20202011
    [4] VasiliyPelenovich, 曾晓梅, 罗进宝, RakhimRakhimov, 左文彬, 张翔宇, 田灿鑫, 邹长伟, 付德君, 杨兵. 气体团簇离子束两步能量修形法的平坦化效应.  , 2021, 70(5): 053601. doi: 10.7498/aps.70.20201454
    [5] 杨颖, 宋俊杰, 万明威, 高靓辉, 方维海. 分子层次的金纳米棒-表面活性剂-磷脂自组装复合体形貌.  , 2020, 69(24): 248701. doi: 10.7498/aps.69.20200979
    [6] 高超, 袁俊杰, 曹进军, 杨荟楠, 单彦广. 纳米流体液膜蒸发自组装双尺度沉积结构三维模拟.  , 2019, 68(14): 140205. doi: 10.7498/aps.68.20190270
    [7] 张祎男, 王丽华, 柳华杰, 樊春海. 基于DNA自组装的金属纳米结构制备及相关纳米光子学研究.  , 2017, 66(14): 147101. doi: 10.7498/aps.66.147101
    [8] 闫昭, 赵文静, 王荣瑶. 基于Logistic函数模型的纳米自组装动力学分析.  , 2016, 65(12): 126101. doi: 10.7498/aps.65.126101
    [9] 徐志欣, 李家云, 孙民华, 姚秀伟. 非晶纳米Ni500团簇等温晶化过程中的结构与动力学研究.  , 2013, 62(18): 186101. doi: 10.7498/aps.62.186101
    [10] 王乐, 刘阳, 徐国堂, 李晓艳, 董前民, 黄杰, 梁培. 分子团簇表面吸附敏化ZnO纳米线的第一性原理研究.  , 2012, 61(6): 063103. doi: 10.7498/aps.61.063103
    [11] 张学贵, 王茺, 鲁植全, 杨杰, 李亮, 杨宇. 离子束溅射自组装Ge/Si量子点生长的演变.  , 2011, 60(9): 096101. doi: 10.7498/aps.60.096101
    [12] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究.  , 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [13] 何丽静, 林晓娉, 王铁宝, 刘春阳. 单晶Si表面离子束溅射沉积Co纳米薄膜的研究.  , 2007, 56(12): 7158-7164. doi: 10.7498/aps.56.7158
    [14] 杨建宋, 李宝兴. 砷化镓离子团簇的稳定性研究.  , 2006, 55(12): 6562-6569. doi: 10.7498/aps.55.6562
    [15] 杨海亮, 邱爱慈, 李静雅, 孙剑锋, 何小平, 汤俊萍, 王海洋, 黄建军, 任书庆, 邹丽丽, 杨 莉. 叠片法测量“闪光二号”加速器的高功率离子束能谱.  , 2005, 54(9): 4072-4078. doi: 10.7498/aps.54.4072
    [16] 王 音, 李 鹏, 宁西京. C36团簇自组装的分子动力学研究.  , 2005, 54(6): 2847-2852. doi: 10.7498/aps.54.2847
    [17] 夏阿根, 杨 波, 金进生, 张亦文, 汤 凡, 叶高翔. 液体基底表面金薄膜中的有序结构和自组装现象.  , 2005, 54(1): 302-306. doi: 10.7498/aps.54.302
    [18] 白 龙, 翁甲强, 方锦清, 罗晓曙. 强流离子束离子径向密度分布的模拟研究.  , 2004, 53(12): 4126-4130. doi: 10.7498/aps.53.4126
    [19] 王文武, 谢二庆, 贺德衍. 离子束合成钇硅化物的结构及红外谱特征.  , 2003, 52(1): 233-236. doi: 10.7498/aps.52.233
    [20] 王震遐, 俞国庆, 阮美龄, 朱福英, 朱德彰, 潘浩昌, 徐洪杰. Ar+离子束轰击在石墨表面形成六方金刚石纳米晶的研究.  , 2000, 49(8): 1524-1527. doi: 10.7498/aps.49.1524
计量
  • 文章访问数:  9705
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-28
  • 修回日期:  2020-02-11
  • 刊出日期:  2020-05-05

/

返回文章
返回
Baidu
map