搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微通道中高分子溶液Poiseuille流的耗散粒子动力学模拟

许少锋 汪久根

引用本文:
Citation:

微通道中高分子溶液Poiseuille流的耗散粒子动力学模拟

许少锋, 汪久根

Dissipative particle dynamics simulation of macromolecular solutions under Poiseuille flow in microchannels

Xu Shao-Feng, Wang Jiu-Gen
PDF
导出引用
  • 利用耗散粒子动力学(dissipative particle dynamics, DPD)方法模拟了微通道中高分子溶液的Poiseuille流动.研究表明, 微通道中的高分子溶液呈现非牛顿流体特性, 可以用幂律流体来描述流动行为, 高分子浓度越大, 幂律指数n 越小. 高分子链与壁面的流体动力学相互作用以及布朗扩散率梯度控制着高分子链的横向迁移. 由于传统的DPD方法中壁面诱导的流体动力学作用部分被屏蔽, 高分子链将向壁面方向迁移, 并且随着流场增强, 高分子链向壁面方向迁移越明显. 未被屏蔽的流体动力学相互作用和布朗扩散率梯度相互竞争, 使高分子链在微通道内的质心分布呈双峰状, 通道中心处高分子浓度出现局部最小值. 当通道宽度减小、强受限时, 壁面与高分子链间的流体动力学相互作用可能全部被屏蔽, 而布朗扩散运动弱, 高分子向壁面方向有微弱的迁移.
    macromolecular solutions under Poiseuille flow in microchannels are investigated using the dissipative particle dynamics (DPD) approach. The results show that the macromolecular solutions are non-Newtonian fluids which can be described by power-law fluids, and the power-law index decreases with the increase of the macromolecular concentration. The DPD simulations show that the hydrodynamic interaction between the macromolecular chains and the wall, and the gradient of Brownian diffusivity of the chains govern the cross-stream migration of the macromolecules. However, the chain-wall hydrodynamic interaction may not be fully developed and are partly screened in conventional DPD approach. Hence, the chains migrate toward the wall during flow. Simulation results also indicate that the migration toward the wall increases with the increase of the driving force. The competition between the unscreened chain-wall hydrodynamic interaction and Brownian diffusivity leads to two symmetric off-center peaks and a local minimum in the channel centerline in the chain center-of-mass distribution. Under strong confinement, the chain-wall hydrodynamic interaction may be fully screened and the Brownian motion is weak, thus the chains weakly move toward the wall for channel of small width.
    • 基金项目: 国家自然科学基金(批准号: 50775202)、高等学校博士学科点专项科研基金(批准号: J20081235)和浙江省自然科学基金(批准号: Z1100475)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50775202), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. J20081235), and the Natural Science Foundation of Zhejiang Province, China (Grant No. Z1100475).
    [1]

    Graham M D 2011 Annu. Rev. Fluid Mech. 43 273

    [2]

    Jiang S C, Zhang L X, Xia A G, Chen H P 2010 Acta Phys. Sin. 59 4337(in Chinese) [江绍钏, 章林溪, 夏阿根, 陈宏平 2010 59 4337]

    [3]

    Reisner W, Morton K J, Riehn R, Wang Y M, Yu Z N, Rosen M, Sturm J C, Chou S Y, Frey E, Austin R H 2005 Phys. Rev. Lett. 94 196101

    [4]

    Pryor H I, Vacanti J P 2008 Front. Biosci. 13 2140

    [5]

    Muthukumar M 2001 Phys. Rev. Lett. 86 3188

    [6]

    Perkins T T, Simth D E, Larson R G, Chu S 1995 Science 268 83

    [7]

    Zheng J J, Yeung E S 2002 Anal. Chem. 74 4536

    [8]

    Zheng J J, Yeung E S 2003 Anal. Chem. 75 3675

    [9]

    Fang L, Hu H, Larson R G 2005 J. Rhel. 49 127

    [10]

    Chen Y L, Graham M D, de Pablo J J, Jo K, Schwartz D C 2005 Macromolecules 38 6680

    [11]

    Metzner A B, Cohen Y, Rangel-Nafaile C 1979 J. Non-Newtonian Fluid Mech. 5 449

    [12]

    Agarwall U S, Dutta A, Mashelkar R A 1994 Chem. Eng. Sci. 49 1693

    [13]

    Ma H, Graham M 2005 Phys. Fluids 17 083103

    [14]

    Brunn P O 1985 J. Chem. Sci. Polym. Phys. 23 89

    [15]

    Jendrejack R M, Schwartz D C, de Pablo J J, Graham M D 2004 J. Chem. Phys. 120 2513

    [16]

    Jendrejack R M, Schwartz D C, Graham M D, de Pablo J J 2003 J. Chem. Phys. 119 1165

    [17]

    Jendrejack R M, Dimalanta E T, Schwartz D C, Graham M D, de Pablo J J 2003 Phys. Rev. Lett. 91 038102

    [18]

    Jendrejack R M, de Pablo J J, Graham M D 2002 J. Chem. Phys. 116 7752

    [19]

    Usta O B, Butler J E, Ladd A J C 2006 Phys. Fluids 18 031703

    [20]

    Usta O B, Ladd A J C, Butler J E 2005 J. Chem. Phys. 122 094902

    [21]

    Khare R, Graham M D, de Pablo J J 2006 Phys. Rev. Lett. 96 224505

    [22]

    Fan X J, Phan-Thien N, Yong N T, Wu X H, Xu D 2003 Phys. Fluids 15 11

    [23]

    Fedosov D A, Karniadakis G E, Caswell B 2008 J. Chem. Phys. 128 144903

    [24]

    Millan J A, Jiang W H, Laradji M, Wang Y M 2007 J. Chem. Phys. 126 124905

    [25]

    Tong H P, Zhang L X 2012 Acta Phys. Sin. 61 058701 (in Chinese) [仝焕平, 章林溪 2012 61 058701]

    [26]

    Segre G, Silberberg A 1961 Nature 189 209

    [27]

    Espanol P, Warren P B 1995 Europhys. Lett. 30 191

    [28]

    Groot R D, Warren P B 1997 J. Chem. Phys. 107 4423

    [29]

    Duong-Hong D, Phan-Thien N, Fan X J 2004 Comput. Mech. 35 24

    [30]

    Rapaport D C 2004 The Art of Molecular Dynamics Simulation (Cambridge, UK: Cambridge University Press) pp49-60

    [31]

    Zhou L W, Liu M B, Chang J Z 2012 Acta Polymerica Sinica 7 720 (in Chinese) [周吕文, 刘谋斌, 常建忠 2012 高分子学报 7 720]

    [32]

    Fan X J, Phan-Thien N, Chen S, Wu X H, Yong N T 2006 Phys. Fluids 18 063102

    [33]

    Jiang W H, Huang J H, Wang Y M, Laradji M 2007 J. Chem. Phys. 126 044901

  • [1]

    Graham M D 2011 Annu. Rev. Fluid Mech. 43 273

    [2]

    Jiang S C, Zhang L X, Xia A G, Chen H P 2010 Acta Phys. Sin. 59 4337(in Chinese) [江绍钏, 章林溪, 夏阿根, 陈宏平 2010 59 4337]

    [3]

    Reisner W, Morton K J, Riehn R, Wang Y M, Yu Z N, Rosen M, Sturm J C, Chou S Y, Frey E, Austin R H 2005 Phys. Rev. Lett. 94 196101

    [4]

    Pryor H I, Vacanti J P 2008 Front. Biosci. 13 2140

    [5]

    Muthukumar M 2001 Phys. Rev. Lett. 86 3188

    [6]

    Perkins T T, Simth D E, Larson R G, Chu S 1995 Science 268 83

    [7]

    Zheng J J, Yeung E S 2002 Anal. Chem. 74 4536

    [8]

    Zheng J J, Yeung E S 2003 Anal. Chem. 75 3675

    [9]

    Fang L, Hu H, Larson R G 2005 J. Rhel. 49 127

    [10]

    Chen Y L, Graham M D, de Pablo J J, Jo K, Schwartz D C 2005 Macromolecules 38 6680

    [11]

    Metzner A B, Cohen Y, Rangel-Nafaile C 1979 J. Non-Newtonian Fluid Mech. 5 449

    [12]

    Agarwall U S, Dutta A, Mashelkar R A 1994 Chem. Eng. Sci. 49 1693

    [13]

    Ma H, Graham M 2005 Phys. Fluids 17 083103

    [14]

    Brunn P O 1985 J. Chem. Sci. Polym. Phys. 23 89

    [15]

    Jendrejack R M, Schwartz D C, de Pablo J J, Graham M D 2004 J. Chem. Phys. 120 2513

    [16]

    Jendrejack R M, Schwartz D C, Graham M D, de Pablo J J 2003 J. Chem. Phys. 119 1165

    [17]

    Jendrejack R M, Dimalanta E T, Schwartz D C, Graham M D, de Pablo J J 2003 Phys. Rev. Lett. 91 038102

    [18]

    Jendrejack R M, de Pablo J J, Graham M D 2002 J. Chem. Phys. 116 7752

    [19]

    Usta O B, Butler J E, Ladd A J C 2006 Phys. Fluids 18 031703

    [20]

    Usta O B, Ladd A J C, Butler J E 2005 J. Chem. Phys. 122 094902

    [21]

    Khare R, Graham M D, de Pablo J J 2006 Phys. Rev. Lett. 96 224505

    [22]

    Fan X J, Phan-Thien N, Yong N T, Wu X H, Xu D 2003 Phys. Fluids 15 11

    [23]

    Fedosov D A, Karniadakis G E, Caswell B 2008 J. Chem. Phys. 128 144903

    [24]

    Millan J A, Jiang W H, Laradji M, Wang Y M 2007 J. Chem. Phys. 126 124905

    [25]

    Tong H P, Zhang L X 2012 Acta Phys. Sin. 61 058701 (in Chinese) [仝焕平, 章林溪 2012 61 058701]

    [26]

    Segre G, Silberberg A 1961 Nature 189 209

    [27]

    Espanol P, Warren P B 1995 Europhys. Lett. 30 191

    [28]

    Groot R D, Warren P B 1997 J. Chem. Phys. 107 4423

    [29]

    Duong-Hong D, Phan-Thien N, Fan X J 2004 Comput. Mech. 35 24

    [30]

    Rapaport D C 2004 The Art of Molecular Dynamics Simulation (Cambridge, UK: Cambridge University Press) pp49-60

    [31]

    Zhou L W, Liu M B, Chang J Z 2012 Acta Polymerica Sinica 7 720 (in Chinese) [周吕文, 刘谋斌, 常建忠 2012 高分子学报 7 720]

    [32]

    Fan X J, Phan-Thien N, Chen S, Wu X H, Yong N T 2006 Phys. Fluids 18 063102

    [33]

    Jiang W H, Huang J H, Wang Y M, Laradji M 2007 J. Chem. Phys. 126 044901

  • [1] 郝鹏, 张丽丽, 丁明明. 高分子囊泡在微管流中惯性迁移现象的有限元分析.  , 2022, 71(18): 188701. doi: 10.7498/aps.71.20220606
    [2] 郑所生, 黄瑶, 邹鲲, 彭倚天. 刮膜蒸发器内非牛顿流体流场特性数值模拟.  , 2022, 71(5): 054701. doi: 10.7498/aps.71.20211921
    [3] 郑所生, 黄瑶, 邹鲲, 彭倚天. 刮膜蒸发器内非牛顿流体流场特性数值模拟.  , 2021, (): . doi: 10.7498/aps.70.20211921
    [4] 杨刚, 郑庭, 程启昊, 张会臣. 非牛顿流体剪切稀化特性的分子动力学模拟.  , 2021, 70(12): 124701. doi: 10.7498/aps.70.20202116
    [5] 沈学峰, 曹宇, 王军锋, 刘海龙. 剪切变稀液滴撞击不同浸润性壁面的数值模拟研究.  , 2020, 69(6): 064702. doi: 10.7498/aps.69.20191682
    [6] 杨颖, 宋俊杰, 万明威, 高靓辉, 方维海. 分子层次的金纳米棒-表面活性剂-磷脂自组装复合体形貌.  , 2020, 69(24): 248701. doi: 10.7498/aps.69.20200979
    [7] 林晨森, 陈硕, 肖兰兰. 适用复杂几何壁面的耗散粒子动力学边界条件.  , 2019, 68(14): 140204. doi: 10.7498/aps.68.20190533
    [8] 许少锋, 楼应侯, 吴尧锋, 王向垟, 何平. 微通道疏水表面滑移的耗散粒子动力学研究.  , 2019, 68(10): 104701. doi: 10.7498/aps.68.20182002
    [9] 戴卿, 项楠, 程洁, 倪中华. 圆截面直流道中微粒黏弹性聚焦机理研究.  , 2015, 64(15): 154703. doi: 10.7498/aps.64.154703
    [10] 唐文来, 项楠, 张鑫杰, 黄笛, 倪中华. 非对称弯曲微流道中粒子惯性聚焦动态过程及流速调控机理研究.  , 2015, 64(18): 184703. doi: 10.7498/aps.64.184703
    [11] 周楠, 陈硕. 带自由面流体的多体耗散粒子动力学模拟.  , 2014, 63(8): 084701. doi: 10.7498/aps.63.084701
    [12] 蒋涛, 任金莲, 徐磊, 陆林广. 非等温非牛顿黏性流体流动问题的修正光滑粒子动力学方法模拟.  , 2014, 63(21): 210203. doi: 10.7498/aps.63.210203
    [13] 林晨森, 陈硕, 李启良, 杨志刚. 耗散粒子动力学GPU并行计算研究.  , 2014, 63(10): 104702. doi: 10.7498/aps.63.104702
    [14] 刘汉涛, 刘谋斌, 常建忠, 苏铁熊. 介观尺度通道内多相流动的耗散粒子动力学模拟.  , 2013, 62(6): 064705. doi: 10.7498/aps.62.064705
    [15] 常建忠, 刘汉涛, 刘谋斌, 苏铁熊. 介观尺度流体绕流球体的耗散粒子动力学模拟.  , 2012, 61(6): 064704. doi: 10.7498/aps.61.064704
    [16] 刘谋斌, 常建忠. 耗散粒子动力学处理复杂固体壁面的一种有效方法.  , 2010, 59(11): 7556-7563. doi: 10.7498/aps.59.7556
    [17] 王晓亮, 陈硕. 液气共存的耗散粒子动力学模拟.  , 2010, 59(10): 6778-6785. doi: 10.7498/aps.59.6778
    [18] 王 禹, 章林溪. 外力诱导吸附高分子单链的拉伸分子动力学研究.  , 2008, 57(5): 3281-3286. doi: 10.7498/aps.57.3281
    [19] 郭坤琨, 邱 枫, 张红东, 杨玉良. 高分子锚定的流体膜.  , 2006, 55(1): 155-161. doi: 10.7498/aps.55.155
    [20] 郭永存, 曾亿山, 卢德唐. 地层静温预测的非牛顿流体数学模型.  , 2005, 54(2): 802-806. doi: 10.7498/aps.54.802
计量
  • 文章访问数:  6568
  • PDF下载量:  692
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-17
  • 修回日期:  2013-03-08
  • 刊出日期:  2013-06-05

/

返回文章
返回
Baidu
map