搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlC分子 X4∑-和B4∑-电子态的光谱性质

刘慧 邢伟 施德恒 孙金锋 朱遵略

引用本文:
Citation:

AlC分子 X4∑-和B4∑-电子态的光谱性质

刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略

Spectroscopic properties of AlC (X4∑-, B4∑-) molecule

Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lue
PDF
导出引用
  • 采用Davidson修正的内收缩多参考组态相互作用方法(MRCI+Q) 结合Dunning等的相关一致基aug-cc-pVnZ (n=D,T,Q,5,6) 计算了AlC分子X4∑-和B4∑-态的势能曲线, 并利用总能量外推公式将这两个态的总能量分别外推至完全基组极限. 对势能曲线进行核价相关修正及相对论修正, 并详细讨论了基组、核价相关和相对论修正 等对X4∑-和B4∑-电子态的能量和光谱常数的影响. 拟合核价相关及相对论效应修正的外推势能曲线, 得到了AlC分子X4∑- 和B4∑-电子态的主要光谱常数Te, Re, ωe, ωexe, ωeye, Be和αe. 它们与实验结果符合较好. 求解双原子分子核运动的径向Schrödinger方程, 找到了无转动的AlC分子两个电子态的全部振动态. 针对每一振动态, 还分别计算了其相应的振动能级和惯性转动常数等分子常数. 它们与已有的实验结果一致.
    The potential energy curves (PECs) of X4∑- and B4∑- states of the AlC molecule have been studied using highly accurate internally contracted multireference configuration interaction approach with the Davidson modification. The Dunning's correlation-consistent basis sets, aug-cc-pVnZ (n=D,T,Q,5,6) are used for the present study. To improve the quality of PECs, core-valence correlation and scalar relativistic corrections are considered. Core-valence correlation corrections are calculated with an aug-cc- pCVTZ basis set. Scalar relativistic correction calcualtions are made using the third-order Douglas-Kroll Hamiltonian approximation at the level of a cc-pV5Z basis set. Obvious effect on the PECs by the core-valence correlation and relativistic corrections has been observed. All the PECs are extrapolated to the complete basis set limit. The convergence observations of present calculations are made and the convergent behavior is discussed with respect to the basis set. Using these PECs, the spectroscopic parameters (TeReωeωexeωeyeBe and αe) of the X4∑- and B4∑- states are determined and compared with those reported in the literature. The vibration manifolds are evaluated for each state of non-rotation AlC molecule by numerically solving the radial Schrödinger equation of nuclear motion. For each vibrational state, the vibrational level and inertial rotation constants are obtained, which are in excellent accordance with the experimental findings.
    • 基金项目: 国家自然科学基金 (批准号: 61077073)和河南省科技计划 (批准号: 122300410303 )资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61077073), and the Program for Science & Technology of Henan Province China (Grant No. 122300410303).
    [1]

    Tsuji T 1973 Astron. Astrophys. 23 411

    [2]

    Knight L B, Cobranchi S T, Herlong J O, Arrington C A 1990 J. Chem. Phys. 92 5856

    [3]

    Thoma A, Caspary N, Wurfel B E, Bondybey V E 1993 J. Chem. Phys. 98 8458

    [4]

    Brazier C R 1993 J. Chem. Phys. 98 2790

    [5]

    Zaitsevskii A V, Dement'ev A I, Zviadadze G N 1986 J. Less. Common Met. 117 237

    [6]

    Bauschlicher C W, Langhoff S R, Pettersson L G M 1988 J. Chem. Phys. 89 5747

    [7]

    Gutsev G L, Jena P, Bartlett R J 1999 J. Chem. Phys. 110 2928

    [8]

    Tzeli D, Mavridis A 2001 J. Phys. Chem. A 105 7672

    [9]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [10]

    Richartz A, Buenker R J, Peyerimhoff S D 1978 Chem. Phys. 28 305

    [11]

    Werner H-J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [12]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [13]

    Dunning T H 1989 J. Chem. Phys. 90 1007

    [14]

    Woon D E, Dunning T H 1993 J. Chem. Phys. 98 1358

    [15]

    Van Mourik T, Wilson A K, Dunning T H 1999 Mol. Phys. 96 529

    [16]

    Van Mourik T, Dunning T H 2000 Int. J. Quantum Chem. 76 205

    [17]

    De Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 114 48

    [18]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [19]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [20]

    Liu H, Xing W, Shi D H, Sun J F, Zhu Z L 2012 Acta Phys. Sin. 61 203101 (in Chinese) [刘慧, 邢伟, 施德恒, 孙金峰, 朱遵略 2012 61 203101]

    [21]

    Bauschlicher C W, Partridge H 1996 Chem. Phys. Lett. 257 601

    [22]

    Karton A, Martin J M L 2006 J. Chem. Phys. 125 144313

  • [1]

    Tsuji T 1973 Astron. Astrophys. 23 411

    [2]

    Knight L B, Cobranchi S T, Herlong J O, Arrington C A 1990 J. Chem. Phys. 92 5856

    [3]

    Thoma A, Caspary N, Wurfel B E, Bondybey V E 1993 J. Chem. Phys. 98 8458

    [4]

    Brazier C R 1993 J. Chem. Phys. 98 2790

    [5]

    Zaitsevskii A V, Dement'ev A I, Zviadadze G N 1986 J. Less. Common Met. 117 237

    [6]

    Bauschlicher C W, Langhoff S R, Pettersson L G M 1988 J. Chem. Phys. 89 5747

    [7]

    Gutsev G L, Jena P, Bartlett R J 1999 J. Chem. Phys. 110 2928

    [8]

    Tzeli D, Mavridis A 2001 J. Phys. Chem. A 105 7672

    [9]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [10]

    Richartz A, Buenker R J, Peyerimhoff S D 1978 Chem. Phys. 28 305

    [11]

    Werner H-J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [12]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [13]

    Dunning T H 1989 J. Chem. Phys. 90 1007

    [14]

    Woon D E, Dunning T H 1993 J. Chem. Phys. 98 1358

    [15]

    Van Mourik T, Wilson A K, Dunning T H 1999 Mol. Phys. 96 529

    [16]

    Van Mourik T, Dunning T H 2000 Int. J. Quantum Chem. 76 205

    [17]

    De Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 114 48

    [18]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [19]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [20]

    Liu H, Xing W, Shi D H, Sun J F, Zhu Z L 2012 Acta Phys. Sin. 61 203101 (in Chinese) [刘慧, 邢伟, 施德恒, 孙金峰, 朱遵略 2012 61 203101]

    [21]

    Bauschlicher C W, Partridge H 1996 Chem. Phys. Lett. 257 601

    [22]

    Karton A, Martin J M L 2006 J. Chem. Phys. 125 144313

  • [1] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl阴离子的光谱性质和跃迁性质.  , 2022, 71(4): 043101. doi: 10.7498/aps.71.20211688
    [2] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl-阴离子的光谱性质和跃迁性质.  , 2021, (): . doi: 10.7498/aps.70.20211688
    [3] 黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花. GeS分子基态和低激发态的势能曲线与光谱性质.  , 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [4] 王杰敏, 王希娟, 陶亚萍. 75As32S+和75As34S+离子的光谱常数与分子常数.  , 2015, 64(24): 243101. doi: 10.7498/aps.64.243101
    [5] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. BCl分子X1Σ+, a3Π和A1Π态的光谱性质.  , 2014, 63(12): 123102. doi: 10.7498/aps.63.123102
    [6] 黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超. SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质.  , 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [7] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. PS自由基X2Π态的势能曲线和光谱性质.  , 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [8] 朱遵略, 郎建华, 乔浩. SF分子基态及低激发态势能函数与光谱常数的研究.  , 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [9] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数.  , 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [10] 王杰敏, 冯恒强, 孙金锋, 施德恒, 李文涛, 朱遵略. SiN自由基X2+, A2和B2+ 电子态的光谱常数研究.  , 2013, 62(1): 013105. doi: 10.7498/aps.62.013105
    [11] 王杰敏, 孙金锋, 施德恒, 朱遵略, 李文涛. PH, PD和PT分子常数理论研究.  , 2012, 61(6): 063104. doi: 10.7498/aps.61.063104
    [12] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. SO+离子b4∑-态光谱常数和分子常数研究.  , 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [13] 施德恒, 牛相宏, 孙金锋, 朱遵略. BF自由基X1+和a3态光谱常数和分子常数研究.  , 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [14] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. 理论研究B2分子X3g-和A3u态的光谱性质.  , 2012, 61(20): 203101. doi: 10.7498/aps.61.203101
    [15] 魏洪源, 熊晓玲, 刘国平, 罗顺忠. TiO基态 (X 3 Δr) 的势能函数与光谱常数.  , 2011, 60(6): 063401. doi: 10.7498/aps.60.063401
    [16] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数.  , 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [17] 王杰敏, 孙金锋. 采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数.  , 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [18] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数.  , 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [19] 施德恒, 张金平, 孙金锋, 刘玉芳, 朱遵略. 基态S和D原子的低能弹性碰撞及SD(X2Π)自由基的准确相互作用势与分子常数.  , 2009, 58(11): 7646-7653. doi: 10.7498/aps.58.7646
    [20] 刘玉孝, 赵振华, 王永强, 陈玉红. 氦原子和类氦离子基态能量的变分计算及相对论修正.  , 2005, 54(6): 2620-2624. doi: 10.7498/aps.54.2620
计量
  • 文章访问数:  5832
  • PDF下载量:  329
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-06
  • 修回日期:  2013-01-31
  • 刊出日期:  2013-06-05

/

返回文章
返回
Baidu
map