搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

方势阱中凝聚体的孤子动力学行为

张波 王登龙 佘彦超 张蔚曦

引用本文:
Citation:

方势阱中凝聚体的孤子动力学行为

张波, 王登龙, 佘彦超, 张蔚曦

Soliton dynamical behavior of the condensates trapped in a square-well potential

Zhang Bo, Wang Deng-Long, She Yan-Chao, Zhang Wei-Xi
PDF
导出引用
  • 利用多重尺度法, 解析地研究了方势阱中玻色-爱因斯坦凝聚体的孤子动力学行为. 结果表明, 方势阱对凝聚体中的孤子动力学有重要的影响. 进入方势阱时孤子作加速运动, 逃逸出势阱时孤子作减速运动; 且随着势阱深度的增加, 孤子的速度增加、幅度增加、宽度减小. 这为实验操控孤子的动力学行为提供一定的参考价值.
    Using multiple-scale method, we study analytically the soliton dynamical behaviors of the Bose-Einstein condensates trapped in a square-well potential. It is found that the square-well potential has important effects on the soliton dynamics. When the soliton goes into the square-well potential, its movement is accelerated; while it leaves the square-well potential, the soliton is decelerated. With the increase in depth of the square-well potential, the velocity of the soliton increases, and its amplitude becomes larger and its width decreases. This may serve as a reference effect for controlling the dynamical characteristics of the soliton in experiments.
    • 基金项目: 国家自然科学基金 (批准号: 51032002)、 湖南省教育厅科研项目 (批准号: 12A140) 和贵州省自科基金 (批准号: J20112219, J20122314) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11074212), the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 12A140), and the Science and Technology Foundation of Guizhou Province, China (Grant Nos. J20112219, J20122314).
    [1]

    Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K 1999 Phys. Rev. Lett. 83 5198

    [2]

    Denschlag J, Simsarian J E, Feder D L, Clark C W, Collins L A, Cubizolles J, Deng L, Hagley E W, Helmerson K, Reinhardt W P, Rolston S L, Schneider B I, Phillips W D 2000 Science 287 97

    [3]

    Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y, Salomon1 C 2002 Science 296 1290

    [4]

    Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150

    [5]

    Song S W, Wang D S, Wang H Q, Liu W M 2012 Phys. Rev. A 85 063617

    [6]

    Li J, Wang D S, Yu Z Y, Yu Y M, Liu W M 2012 Phys. Rev. A 86 023628

    [7]

    Luo X Q, Wang D L, Zhang Z Q, Ding J W, Liu W M 2011 Phys. Rev. A 84 033803

    [8]

    Pethick C J, Smith H 2002 Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, England)

    [9]

    Dalfovo E, Giorgini S, Pitaevskii L P, Stringari S 1999 Rev. Mod. Phys. 71 463

    [10]

    Ji A C, Sun Q, Xie X C, Liu W M 2009 Phys. Rev. Lett. 102 023602

    [11]

    Li Z D, Li Q Y, Li L, Liu W M 2007 Phys. Rev. E 76 026605

    [12]

    Wang D L, Yan X H, Liu W M 2008 Phys. Rev. E 78 026606

    [13]

    Huang G X, Velarde M G, Makarov V A 2001 Phys. Rev. A 64 013617

    [14]

    Huang G X, Szeftel J, Zhu S H 2002 Phys. Rev. A 65 053605

    [15]

    Huang G X 2004 Chin. Phys. 13 1866

    [16]

    Zhang W X, Wang D L, He Z M, Wang F J, Ding J W 2008 Phys. Lett. A 372 4407

    [17]

    Zhang X F, Yang Q, Zhang J F, Chen X Z, Liu W M 2008 Phys. Rev. A 77 023613

    [18]

    Wang D S, Hu X H, Hu J P,, Liu W M 2010 Phys. Rev. A 81 025604

    [19]

    Li Q Y, Li Z D, Yao S F, Li L, Fu G S 2010 Chin. Phys. B 19 080501

    [20]

    Song W W, Li Q Y, Li Z D, Fu G S 2010 Chin. Phys. B 19 070503

    [21]

    He Z M, Wang D L, Zhang W X, Wang F J, Ding J W 2008 Chin. Phys. B 17 3640

    [22]

    Xi Y D, Wang D L, He Z M, Ding J W 2009 Chin. Phys. B 18 0939

    [23]

    Xi Y D, Wang D L, She Y C, Wang F J, Ding J W 2010 Acta Phys. Sin. 59 3720 (in Chinese) [奚玉东, 王登龙, 佘彦超, 王凤姣, 丁建文 2010 59 3720]

    [24]

    Li Z D, Li Q Y, He P B, Liang J Q, Liu W M, Fu G S 2010 Phys. Rev. A 81 015602

    [25]

    Zhang W X, Wang D L, Ding J W 2008 Acta Phys. Sin. 57 6786 (in Chinese) [张蔚曦, 王登龙, 丁建文 2008 57 6786]

    [26]

    Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402

    [27]

    He Z M, Wang D L 2007 Acta Phys. Sin. 56 3088 (in Chinese) [何章明, 王登龙 2007 56 3088]

    [28]

    Zhang H, Duan W S 2013 Acta Phys. Sin. 62 044703 (in Chinese) [张恒, 段文山 2013 62 044703]

    [29]

    Teng F, Xie Z W 2013 Acta Phys. Sin. 62 026701 (in Chinese) [藤斐, 谢征微 2013 62 026701]

    [30]

    He Z M, Wang D L, Ding J W, Yan X H 2012 Acta Phys. Sin. 61 230508 (in Chinese) [何章明, 王登龙, 丁建文, 颜晓红 2012 61 230508]

    [31]

    Fang Y C, Yang Z A 2007 Acta Phys. Sin. 57 7438 (in Chinese) [房永翠, 杨志安 2008 57 7438]

    [32]

    Zhang X F, Hu X H, Liu X X, Liu W M 2009 Phys. Rev. A 79 033630

    [33]

    Zhang X F, Zhang P, Yang Q 2008 Communi. Theo. Phys. 50 1323

    [34]

    Mahmud K W, Kutz J N, Reinhart W P 2002 Phys. Rev. A 66 063607

    [35]

    Albiez M, Gati R, Fölling J, Hunsmann S, Cristiani M, Oberthaler M K 2005 Phys. Rev. Lett. 95 010402

    [36]

    Ziń P, Infeld E, Matuszewski M, Rowlands G, Trippenbach M 2006 Phys. Rev. A 73 022105

    [37]

    Infeld E, Ziń P, Gocalek J, Trippenbach M 2006 Phys. Rev. E 74 026610

    [38]

    Matuszewski M, Malomed B A, Trippenbach M 2007 Phys. Rev. A 75 063621

  • [1]

    Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K 1999 Phys. Rev. Lett. 83 5198

    [2]

    Denschlag J, Simsarian J E, Feder D L, Clark C W, Collins L A, Cubizolles J, Deng L, Hagley E W, Helmerson K, Reinhardt W P, Rolston S L, Schneider B I, Phillips W D 2000 Science 287 97

    [3]

    Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y, Salomon1 C 2002 Science 296 1290

    [4]

    Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150

    [5]

    Song S W, Wang D S, Wang H Q, Liu W M 2012 Phys. Rev. A 85 063617

    [6]

    Li J, Wang D S, Yu Z Y, Yu Y M, Liu W M 2012 Phys. Rev. A 86 023628

    [7]

    Luo X Q, Wang D L, Zhang Z Q, Ding J W, Liu W M 2011 Phys. Rev. A 84 033803

    [8]

    Pethick C J, Smith H 2002 Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, England)

    [9]

    Dalfovo E, Giorgini S, Pitaevskii L P, Stringari S 1999 Rev. Mod. Phys. 71 463

    [10]

    Ji A C, Sun Q, Xie X C, Liu W M 2009 Phys. Rev. Lett. 102 023602

    [11]

    Li Z D, Li Q Y, Li L, Liu W M 2007 Phys. Rev. E 76 026605

    [12]

    Wang D L, Yan X H, Liu W M 2008 Phys. Rev. E 78 026606

    [13]

    Huang G X, Velarde M G, Makarov V A 2001 Phys. Rev. A 64 013617

    [14]

    Huang G X, Szeftel J, Zhu S H 2002 Phys. Rev. A 65 053605

    [15]

    Huang G X 2004 Chin. Phys. 13 1866

    [16]

    Zhang W X, Wang D L, He Z M, Wang F J, Ding J W 2008 Phys. Lett. A 372 4407

    [17]

    Zhang X F, Yang Q, Zhang J F, Chen X Z, Liu W M 2008 Phys. Rev. A 77 023613

    [18]

    Wang D S, Hu X H, Hu J P,, Liu W M 2010 Phys. Rev. A 81 025604

    [19]

    Li Q Y, Li Z D, Yao S F, Li L, Fu G S 2010 Chin. Phys. B 19 080501

    [20]

    Song W W, Li Q Y, Li Z D, Fu G S 2010 Chin. Phys. B 19 070503

    [21]

    He Z M, Wang D L, Zhang W X, Wang F J, Ding J W 2008 Chin. Phys. B 17 3640

    [22]

    Xi Y D, Wang D L, He Z M, Ding J W 2009 Chin. Phys. B 18 0939

    [23]

    Xi Y D, Wang D L, She Y C, Wang F J, Ding J W 2010 Acta Phys. Sin. 59 3720 (in Chinese) [奚玉东, 王登龙, 佘彦超, 王凤姣, 丁建文 2010 59 3720]

    [24]

    Li Z D, Li Q Y, He P B, Liang J Q, Liu W M, Fu G S 2010 Phys. Rev. A 81 015602

    [25]

    Zhang W X, Wang D L, Ding J W 2008 Acta Phys. Sin. 57 6786 (in Chinese) [张蔚曦, 王登龙, 丁建文 2008 57 6786]

    [26]

    Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402

    [27]

    He Z M, Wang D L 2007 Acta Phys. Sin. 56 3088 (in Chinese) [何章明, 王登龙 2007 56 3088]

    [28]

    Zhang H, Duan W S 2013 Acta Phys. Sin. 62 044703 (in Chinese) [张恒, 段文山 2013 62 044703]

    [29]

    Teng F, Xie Z W 2013 Acta Phys. Sin. 62 026701 (in Chinese) [藤斐, 谢征微 2013 62 026701]

    [30]

    He Z M, Wang D L, Ding J W, Yan X H 2012 Acta Phys. Sin. 61 230508 (in Chinese) [何章明, 王登龙, 丁建文, 颜晓红 2012 61 230508]

    [31]

    Fang Y C, Yang Z A 2007 Acta Phys. Sin. 57 7438 (in Chinese) [房永翠, 杨志安 2008 57 7438]

    [32]

    Zhang X F, Hu X H, Liu X X, Liu W M 2009 Phys. Rev. A 79 033630

    [33]

    Zhang X F, Zhang P, Yang Q 2008 Communi. Theo. Phys. 50 1323

    [34]

    Mahmud K W, Kutz J N, Reinhart W P 2002 Phys. Rev. A 66 063607

    [35]

    Albiez M, Gati R, Fölling J, Hunsmann S, Cristiani M, Oberthaler M K 2005 Phys. Rev. Lett. 95 010402

    [36]

    Ziń P, Infeld E, Matuszewski M, Rowlands G, Trippenbach M 2006 Phys. Rev. A 73 022105

    [37]

    Infeld E, Ziń P, Gocalek J, Trippenbach M 2006 Phys. Rev. E 74 026610

    [38]

    Matuszewski M, Malomed B A, Trippenbach M 2007 Phys. Rev. A 75 063621

  • [1] 邵凯花, 席忠红, 席保龙, 涂朴, 王青青, 马金萍, 赵茜, 石玉仁. 双组分玻色-爱因斯坦凝聚体中PT对称势下的异步量子Kármán涡街.  , 2024, 73(11): 110501. doi: 10.7498/aps.73.20232003
    [2] 焦宸, 简粤, 张爱霞, 薛具奎. 自旋-轨道耦合玻色-爱因斯坦凝聚体激发谱及其有效调控.  , 2023, 72(6): 060302. doi: 10.7498/aps.72.20222306
    [3] 贺丽, 张天琪, 李可芯, 余增强. 双组分玻色-爱因斯坦凝聚体的混溶性.  , 2023, 72(11): 110302. doi: 10.7498/aps.72.20230001
    [4] 王青青, 周玉珊, 王静, 樊小贝, 邵凯花, 赵月星, 宋燕, 石玉仁. 三体作用下准一维玻色-爱因斯坦凝聚体中表面带隙孤子及其稳定性.  , 2023, 72(10): 100308. doi: 10.7498/aps.72.20222195
    [5] 李新月, 祁娟娟, 赵敦, 刘伍明. 自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解.  , 2023, 72(10): 106701. doi: 10.7498/aps.72.20222319
    [6] 陈礼元, 高超, 林机, 李慧军. $ {\cal{PT}}$对称极化子凝聚体系统中的稳定孤子及其调控.  , 2022, 71(18): 181101. doi: 10.7498/aps.71.20220475
    [7] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学.  , 2022, 71(21): 210302. doi: 10.7498/aps.71.20220697
    [8] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性.  , 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [9] 贾瑞煜, 方乒乒, 高超, 林机. 玻色-爱因斯坦凝聚体中的淬火孤子与冲击波.  , 2021, 70(18): 180303. doi: 10.7498/aps.70.20210564
    [10] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态.  , 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [11] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响.  , 2019, 68(8): 080301. doi: 10.7498/aps.68.20182013
    [12] 陈良超, 孟增明, 王鹏军. 87Rb玻色-爱因斯坦凝聚体的快速实验制备.  , 2017, 66(8): 083701. doi: 10.7498/aps.66.083701
    [13] 何章明, 张志强. 玻色-爱因斯坦凝聚体中的双孤子相互作用操控.  , 2016, 65(11): 110502. doi: 10.7498/aps.65.110502
    [14] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构.  , 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [15] 藤斐, 谢征微. 光晶格中双组分玻色-爱因斯坦凝聚系统的调制不稳定性.  , 2013, 62(2): 026701. doi: 10.7498/aps.62.026701
    [16] 刘超飞, 万文娟, 张赣源. 自旋轨道耦合的23Na自旋-1玻色-爱因斯坦凝聚体中的涡旋斑图的研究.  , 2013, 62(20): 200306. doi: 10.7498/aps.62.200306
    [17] 张蔚曦, 佘彦超, 王登龙. 计及两体和三体作用下的二维凝聚体中的孤子特性.  , 2011, 60(7): 070514. doi: 10.7498/aps.60.070514
    [18] 奚玉东, 王登龙, 佘彦超, 王凤姣, 丁建文. 双色光晶格势阱中玻色-爱因斯坦凝聚体的Landau-Zener隧穿行为.  , 2010, 59(6): 3720-3726. doi: 10.7498/aps.59.3720
    [19] 何章明, 王登龙. 凝聚体中亮孤子和暗孤子的交替演化.  , 2007, 56(6): 3088-3091. doi: 10.7498/aps.56.3088
    [20] 洪学仁, 段文山, 孙建安, 石玉仁, 吕克璞. 非均匀尘埃等离子体中孤子的传播.  , 2003, 52(11): 2671-2677. doi: 10.7498/aps.52.2671
计量
  • 文章访问数:  6801
  • PDF下载量:  647
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-18
  • 修回日期:  2013-02-03
  • 刊出日期:  2013-06-05

/

返回文章
返回
Baidu
map