-
通过构造外势与泵浦的空间分布, 设计了一维非相干泵浦激子极化凝聚体系统满足的
$ {\cal{PT}} $ 对称模型. 在弱非线性效应情况下, 确定了体系的$ {\cal{PT}} $ 对称相变点, 展现了线性谱的特征. 在正常非线性效应情况下, 找到了零背景的亮孤子、零背景的多极暗孤子、非零背景的多极对称暗孤子、对称破缺暗孤子、非零背景的凹陷、凸起暗孤子, 并讨论了外势虚部与非均匀泵浦对孤子轮廓与孤子稳定性的影响. 通过分析孤子的轮廓与稳定性, 厘清了$ {\cal{PT}} $ 对称外势与非均匀泵浦之间的竞争关系, 给出激发各种亮、暗孤子的方案, 并界定了这些孤子的存在与稳定区域. 最后, 通过调制$ {\cal{PT}} $ 对称外势虚部实现了对$ {\cal{PT}} $ 对称破缺暗孤子的调控, 揭示了极化子凝聚体系统在全光开关等光信息处理方面的潜在应用.-
关键词:
- $ {\cal{PT}}$ 对称 /
- 相变点 /
- 非相干泵浦 /
- 激子极化子凝聚体 /
- 孤子
By constructing the spatial distribution of external potential and incoherent pumping, a$ {\cal{PT}} $ symmetrical model satisfied by the one-dimensional incoherent pumped exciton-polariton condensate system is designed. In the weakly nonlinear case, the$ {\cal{PT}} $ symmetrical phase transition point is found, and the linear spectrum is shown. In the normal nonlinear case, found are the bright soliton with the zero background, the multi-poles dark solitons with zero background, the symmetry breaking dark solitons and symmetrical dark soliton with the homogeneous background, and the dip- and hump-type dark solitons with the homogeneous background, and discussed are the effects of inhomogeneous pumping and the imaginary part of external potential on the profiles and the stability of solitons. Through these results, the competition between$ {\cal{PT}} $ symmetrical potential and the inhomogeneous pumping is understood, the scheme that how the bright and dark solitons are excited is presented, and the existence and stability regions of these solitons are determined. Finally, the symmetry breaking dark solitons are controlled by modulating the imaginary part of the$ {\cal{PT}} $ symmetrical potential, which reveals the potential applications of the polariton condensate system in optical information processing, such as the all-optical switches.-
Keywords:
- parity-time symmetry /
- phase transition point /
- incoherent pumping /
- exciton-polariton condensate /
- soliton
[1] Cao H, Wiersig J 2015 Rev. Mod. Phys. 87 61
Google Scholar
[2] Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243
Google Scholar
[3] Musslimani Z H, Makris K G, El G R, Christodoulides D N 2008 Phys. Rev. Lett. 100 030402
Google Scholar
[4] Rüter C, Makris K, El G R 2010 Nat. Phys. 6 192
Google Scholar
[5] Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature 488 167
Google Scholar
[6] Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier R M, Aimez V, Sililoglou G A, Christodoulides D N 2009 Phys. Rev. Lett. 103 093902
Google Scholar
[7] Feng L, Wong Z J, Ma R, Wang Y, Zhang X 2014 Science 346 972
Google Scholar
[8] Hodaei H, Miri M, Heinrich M, Christodoulides D N, Khajavikhan M 2014 Science 346 975
Google Scholar
[9] Regensburger A, Miri M, Bersch C, Näger J, Onishchukov G, Christodoulides D N, Peschel U 2013 Phys. Rev. Lett. 110 223902
Google Scholar
[10] Peng B, Özdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M, Yang L 2014 Nat. Phys. 10 394
Google Scholar
[11] Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G, Xiao M 2014 Nat. Photonics 8 524
Google Scholar
[12] Ramezani H, Schindler J, Ellis F M, Gunther U, Kottos T 2012 Phys. Rev. A 85 062122
Google Scholar
[13] Lin Z, Schindler J, Ellis F M, Kottos T 2012 Phys. Rev. A 85 050101
Google Scholar
[14] Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F, Scherer A 2013 Nat. Mater. 12 108
Google Scholar
[15] Sun Y, Tan W, Li H, Li J, Chen H 2014 Phys. Rev. Lett. 112 143903
Google Scholar
[16] Li J, Harter A K, Liu J, Melo L, Joglekar Y N, Luo L 2019 Nat. Commun. 10 1
Google Scholar
[17] Hang C, Huang G, Konotop V V 2013 Phys. Rev. Lett. 110 083604
Google Scholar
[18] Sheng J, Miri M, Christodoulides D N, Xiao M 2013 Phys. Rev. A 88 041803
Google Scholar
[19] Li H, Dou J, Huang G 2013 Opt. Express 21 32053
Google Scholar
[20] Wu J, Artoni M, Rocca G 2014 Phys. Rev. Lett. 113 123004
Google Scholar
[21] Zhang Z, Zhang Y, Sheng J, Yang L, Miri M, Christodoulides D N, He B, Zhang Y, Xiao M 2016 Phys. Rev. Lett. 117 123601
Google Scholar
[22] Makris K G, El-Ganainy R, Christodoulides D N, Musslimani Z H 2008 Phys. Rev. Lett. 100 103904
Google Scholar
[23] Sieberer L M, Buchhold M, Diehl S 2016 Rep. Prog. Phys. 79 096001
Google Scholar
[24] Wouters M, Carusotto I 2007 Phys. Rev. Lett. 99 140402
Google Scholar
[25] Szymanska M H, Keeling J, Littlewood P B 2006 Phys. Rev. Lett. 96 230602
Google Scholar
[26] Byrnes T, Kim N Y, Yamamoto Y 2014 Nat. Phys. 10 803
Google Scholar
[27] Anton C, Liew T C H, Cuadra J, Martin M D, Eldridge P S, Hatzopoulos Z, Stavrinidis G, Savvidis P G, Vina L 2013 Phys. Rev. B 88 245307
Google Scholar
[28] Smirnov L A, Smirnova D A, Ostrovskaya E A, Kivshar Y S 2014 Phys. Rev. B 89 235310
Google Scholar
[29] Xue Y, Matuszewski M 2014 Phys. Rev. Lett. 112 216401
Google Scholar
[30] Liew T C H, Egorov O A, Matuszewski M, Kyriienko O, Ma X, Ostrovskaya E A 2015 Phys. Rev. B 91 085413
Google Scholar
[31] Kol G R 2017 Opt. Quantum Electron. 49 385
Google Scholar
[32] Cheng S, Chen T 2018 Phys. Rev. E 97 032212
Google Scholar
[33] Yoon S, Sun M, Rubo Y G, Savenko I G 2019 Phys. Rev. A 100 023609
Google Scholar
[34] Opala A, Pieczarka M, Bobrovska N, Matuszewski M 2018 Phys. Rev. B 97 155304
Google Scholar
[35] Xue Y, Jiang Y, Wang G, Wang R, Feng S, Matuszewski M 2018 Opt. Express 26 6267
Google Scholar
[36] Sigurdsson H, Liew T C H, Shelykh I A 2017 Phys. Rev. B 96 205406
Google Scholar
[37] Ma X, Egorov O A, Schumacher S 2017 Phys. Rev. Lett. 118 157401
Google Scholar
[38] Pinsker F, Flayac H 2016 Proc. R. Soc. A 472 20150592
Google Scholar
[39] Kulczykowski M, Bobrovska N, Matuszewski M 2015 Phys. Rev. B 91 245310
Google Scholar
[40] Ma X, Schumacher S 2017 Phys. Rev. B 95 235301
Google Scholar
[41] Ostrovskaya E A, Abdullaev J, Desyatnikov A S, Fraser M D, Kivshar Y S 2012 Phys. Rev. A 86 013636
Google Scholar
[42] Tanese D, Flayac H, Solnyshkov D, Amo A, Lemaître A, Galopin E, Braive R, Senellart P, Sagnes I, Malpuech G, Bloch J 2013 Nat. Commun. 4 1749
Google Scholar
[43] Ostrovskaya E A, Abdullaev J, Fraser M D, Desyatnikov A S, Kivshar Y S 2013 Phys. Rev. Lett. 110 170407
Google Scholar
[44] Pinsker F, Flayac H 2014 Phys. Rev. Lett. 112 140405
Google Scholar
[45] Lien J, Chen Y, Ishida N, Chen H, Hwang C, Nori F 2015 Phys. Rev. B 91 024511
Google Scholar
[46] Chestnov I Y, Demirchyan S S, Alodjants A P, Rubo Y G, Kavokin A V 2016 Sci. Rep. 6 19551
Google Scholar
[47] Ma X K, Kartashov Y Y, Gao T, Schumacher S 2019 New J. Phys. 21 123008
Google Scholar
[48] Jia C Y, Liang Z X 2020 Chin. Phys. Lett. 37 040502
Google Scholar
[49] Zhang K, Wen W, Lin J, Li H 2021 New J. Phys. 23 033011
Google Scholar
[50] Yang J 2011 Nonlinear Waves in Integrable and Nonintegrable Systems (Philadephia: PA: SIAM) p327
[51] Carusotto I, Ciuti C 2013 Rev. Mod. Phys. 85 299
Google Scholar
[52] Zhang K, Liang Y, Lin J, Li H 2018 Phys. Rev. A 97 023844
Google Scholar
[53] Suchkov S V, Sukhorukov A A, Huang J H 2016 Laser Photonics Rev. 10 177
Google Scholar
[54] Konotop V V, Yang J K, Zezyulin D A 2016 Rev. Mod. Phys. 88 035002
Google Scholar
[55] Ozdemir S K, Rotter S, Nori F, Yang L 2019 Nat. Mater. 18 783
Google Scholar
[56] Rodislav D, Boris A M 2011 Opt. Lett. 36 4323
Google Scholar
[57] Yang J 2017 J. Opt. 19 054004
Google Scholar
[58] Akhmediev N, Ankiewicz A 2005 Dissipative Solitons (Berlin: Springer) pp1–17
[59] Bludov Y V, Hang C, Huang G, Konotop V V 2014 Opt. Lett. 39 3382
Google Scholar
[60] Nixon S, Zhu Y, Yang J 2012 Opt. Lett. 37 4874
Google Scholar
[61] 党婷婷, 王娟芬, 安亚东, 刘香莲, 张朝霞, 杨玲珍 2015 64 064211
Google Scholar
Dang T T, Wang J F, An Y D, Liu X L, Zhang Z X, Yang L Z 2015 Acta Phys. Sin. 64 064211
Google Scholar
-
图 1 弱非线性激发的线性谱 (a) 参数取
$ w=0.45 $ ,$ \xi_0=1 $ ,$ W=1 $ 时$ {\cal{PT}} $ 对称外势的轮廓图; (b) 线性谱中的虚部最大值随W的变化曲线; (c)$ W=0.1 $ 和(d)$ W=0.9 $ 时的线性谱以及离散本征值对应本征函数的虚实部Fig. 1. Linear spectrum of weakly nonlinear excitations: (a) Profile of
$ {\cal{PT}} $ symmetrical potential. Here,$ w=0.45 $ ,$ \xi_0=1 $ , and$ W=1 $ ; (b) Im$(\beta)_{{\rm{max}}}$ as a function of W; (c), (d) linear spectrum for$ W=0.1 $ ,$ W=0.9 $ and the discrete eigenvalues corresponding to the imaginary and real parts of the eigenfunction, respectively图 2 非均匀泵浦强度
$ \sigma_8 < 0 $ 时的暗孤子解 (a)—(c)分别为暗孤子的功率、稳定性和增益耗散强度随$ \sigma_8 $ 的变化曲线; (d1)—(g1)是取图(a)—(c)中字母d—g相应的W和$ \sigma_8 $ 时孤子的轮廓$ |\psi| $ (红实线) 以及相位ϕ (蓝色点虚线)的图像; (d2)—(g2)是孤子演化的结果, 图中, 左侧是演化结果的投影, 右侧是特定时刻s的演化结果Fig. 2. Dark solitons for inhomogeneous pumping
$ \sigma_8 < 0 $ : (a)–(c) Power, stability and total gain loss intensity curves of the dark solitons as a function of$ \sigma_8 $ , respectively; (d1)–(g1) profiles of the dark solitons with different$ \sigma_8 $ and W marked by the letter d–g in the panels (a)–(c) respectively, the red solid line (blue dashed-dotted line) denotes the profile$ |\psi| $ (phase ϕ); (d2)–(g2) projections and profiles of the evolution results. In the left panels, the projections of the evolution are shown. The profiles and phases of evolution at the special time s marked by the green line of the left panels are shown in the right panels图 3 均匀泵浦情况下的暗孤子 (a)—(c)分别为孤子的功率、稳定性和增益耗散强度随W的变化曲线; (d1)—(f1)是取图(a)—(c)中字母d—f相应的W和
$ \sigma_8 $ 时孤子的轮廓$ |\psi| $ (红实线) 和相位ϕ(蓝色点虚线) 的图像; (d2)—(f2)是孤子演化的结果, 图中, 左侧是演化结果的投影, 右侧是特定时刻s的演化结果Fig. 3. Dark solitons for homogeneous pumping: (a)–(c) Power, stability and total gain loss intensity curves of the dark soliton as a function of W; (d1)–(f1) profiles of the dark soliton marked by the letter d–f in the panels (a)–(c) respectively, the red solid line (blue dashed-dotted line) denote the amplitude
$ |\psi| $ (phase ϕ); (d2)–(f2) projections and profiles of the evolution results. In the left panels, the projections of the evolution are shown. The profiles and phases of evolution at the special time s marked by the green line of the left panels are shown in the right panels.图 4 非均匀泵浦
$ \sigma_8 > 0 $ 时的亮孤子 (a)—(c)分别为亮孤子的功率、稳定性和增益损耗强度随$ \sigma_8 $ 的变化曲线; (d1)—(g1)是取图(a)—(c)中字母d—g相应的W和$ \sigma_8 $ 时孤子的轮廓; (d2)—(g2) 是孤子演化的结果, 图中, 左侧是演化结果的投影, 右侧是特定时刻s的演化结果Fig. 4. Bright solitons for inhomogeneous pumping
$ \sigma_8 > 0 $ : (a)–(c) Power, stability, and total gain loss intensity curves of the bright soliton as a function of$ \sigma_8 $ ; (d1)–(g1) profiles of the bright solitons marked by the letter d–g in the panels (a)–(c) respectively; (d2)–(g2) projections and profiles of the evolution results. In the left panel, the projections of the evolution results are shown. The profiles of evolution at the special times s marked by the green line of the left panels are shown in the right panels图 5 孤子类型与孤子稳定区域分布图 (a) 7种孤子在参数W与
$ \sigma_8 $ 区域的分布图; (b) 稳定孤子在参数W与$ \sigma_8 $ 区域的分布图; (c)—(h) 图 (a), (b) 中字母c—h相应的不同参数所对应孤子的演化结果, 图中, 左侧是演化结果的投影, 右侧是特定时刻s孤子轮廓和相位的演化结果Fig. 5. Phase diagram for soliton types and stability: (a) Phase diagram of seven types of solitons as the functions of W and
$ \sigma_8 $ ; (b) phase diagram of stability regions for seven types of solitons; (c)–(h) projections and profiles of the evolution results of solitons marked by the letter c–h in the panels (a) and (b) respectively. In the left panels, the projections of the evolution are shown. The profiles and phases of evolution at the special time s marked by the green line of the left panels are shown in the right panels图 6 调控外势虚部时对称破缺孤子的演化结果 (a)
$ W= $ $ 0.4, \;\sigma_8=-0.5 $ 时暗孤子的演化结果; (b)$ W=0.52, \; \sigma_8= $ $ -0.13 $ 时暗孤子的演化结果; (c)$\xi_0 = 3, \;W = 0.1, \;\sigma_8 = -0.5$ 时暗孤子的演化结果Fig. 6. Evolution results of symmetry breaking solitons by controlling the imaginary part of
$ {\cal{PT}} $ potential: (a) The evolution results of dark soliton with$ W=0.4, \;\sigma_8=-0.5 $ ; (b) the evolution results of dark soliton with$ W=0.52, $ $ \sigma_8=-0.13 $ ; (c) the evolution results of dark soliton with$ \xi_0=3, \; W=0.1,\; \sigma_8=-0.5 $ -
[1] Cao H, Wiersig J 2015 Rev. Mod. Phys. 87 61
Google Scholar
[2] Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243
Google Scholar
[3] Musslimani Z H, Makris K G, El G R, Christodoulides D N 2008 Phys. Rev. Lett. 100 030402
Google Scholar
[4] Rüter C, Makris K, El G R 2010 Nat. Phys. 6 192
Google Scholar
[5] Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature 488 167
Google Scholar
[6] Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier R M, Aimez V, Sililoglou G A, Christodoulides D N 2009 Phys. Rev. Lett. 103 093902
Google Scholar
[7] Feng L, Wong Z J, Ma R, Wang Y, Zhang X 2014 Science 346 972
Google Scholar
[8] Hodaei H, Miri M, Heinrich M, Christodoulides D N, Khajavikhan M 2014 Science 346 975
Google Scholar
[9] Regensburger A, Miri M, Bersch C, Näger J, Onishchukov G, Christodoulides D N, Peschel U 2013 Phys. Rev. Lett. 110 223902
Google Scholar
[10] Peng B, Özdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M, Yang L 2014 Nat. Phys. 10 394
Google Scholar
[11] Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G, Xiao M 2014 Nat. Photonics 8 524
Google Scholar
[12] Ramezani H, Schindler J, Ellis F M, Gunther U, Kottos T 2012 Phys. Rev. A 85 062122
Google Scholar
[13] Lin Z, Schindler J, Ellis F M, Kottos T 2012 Phys. Rev. A 85 050101
Google Scholar
[14] Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F, Scherer A 2013 Nat. Mater. 12 108
Google Scholar
[15] Sun Y, Tan W, Li H, Li J, Chen H 2014 Phys. Rev. Lett. 112 143903
Google Scholar
[16] Li J, Harter A K, Liu J, Melo L, Joglekar Y N, Luo L 2019 Nat. Commun. 10 1
Google Scholar
[17] Hang C, Huang G, Konotop V V 2013 Phys. Rev. Lett. 110 083604
Google Scholar
[18] Sheng J, Miri M, Christodoulides D N, Xiao M 2013 Phys. Rev. A 88 041803
Google Scholar
[19] Li H, Dou J, Huang G 2013 Opt. Express 21 32053
Google Scholar
[20] Wu J, Artoni M, Rocca G 2014 Phys. Rev. Lett. 113 123004
Google Scholar
[21] Zhang Z, Zhang Y, Sheng J, Yang L, Miri M, Christodoulides D N, He B, Zhang Y, Xiao M 2016 Phys. Rev. Lett. 117 123601
Google Scholar
[22] Makris K G, El-Ganainy R, Christodoulides D N, Musslimani Z H 2008 Phys. Rev. Lett. 100 103904
Google Scholar
[23] Sieberer L M, Buchhold M, Diehl S 2016 Rep. Prog. Phys. 79 096001
Google Scholar
[24] Wouters M, Carusotto I 2007 Phys. Rev. Lett. 99 140402
Google Scholar
[25] Szymanska M H, Keeling J, Littlewood P B 2006 Phys. Rev. Lett. 96 230602
Google Scholar
[26] Byrnes T, Kim N Y, Yamamoto Y 2014 Nat. Phys. 10 803
Google Scholar
[27] Anton C, Liew T C H, Cuadra J, Martin M D, Eldridge P S, Hatzopoulos Z, Stavrinidis G, Savvidis P G, Vina L 2013 Phys. Rev. B 88 245307
Google Scholar
[28] Smirnov L A, Smirnova D A, Ostrovskaya E A, Kivshar Y S 2014 Phys. Rev. B 89 235310
Google Scholar
[29] Xue Y, Matuszewski M 2014 Phys. Rev. Lett. 112 216401
Google Scholar
[30] Liew T C H, Egorov O A, Matuszewski M, Kyriienko O, Ma X, Ostrovskaya E A 2015 Phys. Rev. B 91 085413
Google Scholar
[31] Kol G R 2017 Opt. Quantum Electron. 49 385
Google Scholar
[32] Cheng S, Chen T 2018 Phys. Rev. E 97 032212
Google Scholar
[33] Yoon S, Sun M, Rubo Y G, Savenko I G 2019 Phys. Rev. A 100 023609
Google Scholar
[34] Opala A, Pieczarka M, Bobrovska N, Matuszewski M 2018 Phys. Rev. B 97 155304
Google Scholar
[35] Xue Y, Jiang Y, Wang G, Wang R, Feng S, Matuszewski M 2018 Opt. Express 26 6267
Google Scholar
[36] Sigurdsson H, Liew T C H, Shelykh I A 2017 Phys. Rev. B 96 205406
Google Scholar
[37] Ma X, Egorov O A, Schumacher S 2017 Phys. Rev. Lett. 118 157401
Google Scholar
[38] Pinsker F, Flayac H 2016 Proc. R. Soc. A 472 20150592
Google Scholar
[39] Kulczykowski M, Bobrovska N, Matuszewski M 2015 Phys. Rev. B 91 245310
Google Scholar
[40] Ma X, Schumacher S 2017 Phys. Rev. B 95 235301
Google Scholar
[41] Ostrovskaya E A, Abdullaev J, Desyatnikov A S, Fraser M D, Kivshar Y S 2012 Phys. Rev. A 86 013636
Google Scholar
[42] Tanese D, Flayac H, Solnyshkov D, Amo A, Lemaître A, Galopin E, Braive R, Senellart P, Sagnes I, Malpuech G, Bloch J 2013 Nat. Commun. 4 1749
Google Scholar
[43] Ostrovskaya E A, Abdullaev J, Fraser M D, Desyatnikov A S, Kivshar Y S 2013 Phys. Rev. Lett. 110 170407
Google Scholar
[44] Pinsker F, Flayac H 2014 Phys. Rev. Lett. 112 140405
Google Scholar
[45] Lien J, Chen Y, Ishida N, Chen H, Hwang C, Nori F 2015 Phys. Rev. B 91 024511
Google Scholar
[46] Chestnov I Y, Demirchyan S S, Alodjants A P, Rubo Y G, Kavokin A V 2016 Sci. Rep. 6 19551
Google Scholar
[47] Ma X K, Kartashov Y Y, Gao T, Schumacher S 2019 New J. Phys. 21 123008
Google Scholar
[48] Jia C Y, Liang Z X 2020 Chin. Phys. Lett. 37 040502
Google Scholar
[49] Zhang K, Wen W, Lin J, Li H 2021 New J. Phys. 23 033011
Google Scholar
[50] Yang J 2011 Nonlinear Waves in Integrable and Nonintegrable Systems (Philadephia: PA: SIAM) p327
[51] Carusotto I, Ciuti C 2013 Rev. Mod. Phys. 85 299
Google Scholar
[52] Zhang K, Liang Y, Lin J, Li H 2018 Phys. Rev. A 97 023844
Google Scholar
[53] Suchkov S V, Sukhorukov A A, Huang J H 2016 Laser Photonics Rev. 10 177
Google Scholar
[54] Konotop V V, Yang J K, Zezyulin D A 2016 Rev. Mod. Phys. 88 035002
Google Scholar
[55] Ozdemir S K, Rotter S, Nori F, Yang L 2019 Nat. Mater. 18 783
Google Scholar
[56] Rodislav D, Boris A M 2011 Opt. Lett. 36 4323
Google Scholar
[57] Yang J 2017 J. Opt. 19 054004
Google Scholar
[58] Akhmediev N, Ankiewicz A 2005 Dissipative Solitons (Berlin: Springer) pp1–17
[59] Bludov Y V, Hang C, Huang G, Konotop V V 2014 Opt. Lett. 39 3382
Google Scholar
[60] Nixon S, Zhu Y, Yang J 2012 Opt. Lett. 37 4874
Google Scholar
[61] 党婷婷, 王娟芬, 安亚东, 刘香莲, 张朝霞, 杨玲珍 2015 64 064211
Google Scholar
Dang T T, Wang J F, An Y D, Liu X L, Zhang Z X, Yang L Z 2015 Acta Phys. Sin. 64 064211
Google Scholar
计量
- 文章访问数: 3923
- PDF下载量: 135
- 被引次数: 0