-
利用同伦分析方法, 研究了一类由柱形杂质随机嵌入基质所形成的、电场和电流密度满足J = σ E + χ |E|2E + η|E|4E 形式本构关系的高阶弱非线性复合介质在外加直流电场作用下的电势分布问题. 首先利用模函数展开法, 将本构方程及边界条件化成了一系列非线性常微分方程的边值问题; 再利用同伦分析方法进行求解, 给出了电势在基质和杂质区域的渐近解析解.
-
关键词:
- 高阶弱非线性复合介质 /
- 模函数展开法 /
- 同伦分析方法 /
- 电势分布
By using the homotopy analysis method (HAM), the electrostatic potential distribution problems of a type of high-order weakly nonlinear composite with a cylindrical inclusion randomly embedded in a host medium, which obeyes a current-field constitutive relation of J = σ E + χ |E|2E + η|E|4E, are investigated under the action of an external direct current electric field. With the mode expansion method, the current-field constitutive relation and their boundary conditions are transformed into a series of boundary value problems of nonlinear ordinary differential equations. Then the HAM is used to solve the boundary value problems of nonlinear ordinary differential equations and the asymptotic analytical solutions of electrostatic potential distribution in the inclusion and the host regions are given.-
Keywords:
- high-order weakly nonlinear composites /
- mode function expansion method /
- homotopy analysis method /
- electrostatic potential distribution







下载: