搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液态Sn-Cu钎料的黏滞性与润湿行为研究

赵宁 黄明亮 马海涛 潘学民 刘晓英

引用本文:
Citation:

液态Sn-Cu钎料的黏滞性与润湿行为研究

赵宁, 黄明亮, 马海涛, 潘学民, 刘晓英

Viscosities and wetting behaviors of Sn-Cu solders

Zhao Ning, Huang Ming-Liang, Ma Hai-Tao, Pan Xue-Min, Liu Xiao-Ying
PDF
导出引用
  • 金属熔体的黏度和表面张力都是与液态结构相关的敏感物理性质, 且存在一定的相互关系. 对于微电子封装材料而言, 黏度和表面张力均是影响其工艺性能的重要参量. 本文利用回转振动式高温熔体黏度仪测量了Sn-xCu (x = 0.7, 1.5, 2)钎料熔体在不同温度下的黏度值, 发现在一定温度范围内钎料熔体的黏度值存在突变, 可划分为低温区和高温区. 在各温区内, 黏温关系很好地符合Arrhenius方程, 在此基础上讨论了液态钎料的结构特征和演变规律. 同时, 利用黏度值计算了液态Sn-xCu钎料在相应温度下的表面张力, 并通过Sn-xCu钎料在Cu基板上的润湿铺展实验对计算结果进行验证. 结果显示, 润湿角和扩展率的测试结果与表面张力的计算结果具有很好的一致性, 表明通过熔体黏度值来计算锡基二元无铅钎料合金表面张力并评估其润湿性能的方法是可行的.
    The viscosity and surface tension of metal melt are all sensitive physical properties that relate to the liquid structure and also have a certain correlation between them. For electronic packaging materials, both viscosities and surface tensions are very important parameters affecting the processing properties. In this study, the viscosities of Sn-xCu (x = 0.7, 1.5, 2) solder melts are measured by using a torsional oscillation high-temperature viscometer. Abrupt change in viscosity occurrs in a certain range of temperature. The temperature range can accordingly be divided into a low temperature zone and a high temperature zone. The relationship between viscosity and temperature can fit to the Arrhenius equation very well in each temperature zone. The structure characteristics and evolutions of the liquid solders are then discussed. Meanwhile, the surface tensions of the Sn-xCu solders are calculated according to the viscosity values at the corresponding temperatures. The test results of the wetting angle and the spreading rate are in good agreement with the calculations, indicating that the method of using the viscosity values to calculate the surface tensions of binary lead-free solder alloys and evaluate their wettabilities is feasible.
    • 基金项目: 国家自然科学基金(批准号:51171036)、高等学校博士学科点专项科研基金(批准号:20120041120038)和中央高校基本科研业务费(批准号:DUT11RC(3)56)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51171036), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120041120038), and the Fundamental Research Fund for the Central Universities, China (Grant No. DUT11RC(3)56).
    [1]

    Geng H R, Sun C J, Yang Z X, Wang R, Ji L L 2006 Acta Phys. Sin. 55 1320 (in Chinese) [耿浩然, 孙春静, 杨中喜, 王瑞, 吉蕾蕾 2006 55 1320]

    [2]

    Hou J X, Guo H X, Zhan C W, Tian X L, Chen X C 2006 Mater. Lett. 60 2038

    [3]

    Mi G B, Li P J, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 Acta Phys. Sin. 60 056601 (in Chinese) [弭光宝, 李培杰, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 60 056601]

    [4]

    Sun M H, Geng H R, Bian X F, Liu Y 2000 Acta Metall. Sin. 36 1134 (in Chinese) [孙民华, 耿浩然, 边秀房, 刘燕 2000 金属学报 36 1134]

    [5]

    Wang J L 2002 Microelectron. Reliabbility 42 293

    [6]

    Sun Y Y, Zhang Z Q, Wong C P 2005 Macromol. Mater. Eng. 290 1204

    [7]

    Wei X Q, Zhou L, Huang H Z, Xiao H B 2005 Mater. Lett. 59 1889

    [8]

    Egry I, Lohöfer G, Sauerland S 1993 J. Non-Cryst. Solids 156-158 830

    [9]

    Egry I 1993 Scripta Metall. Mater. 28 1273

    [10]

    Zhao N, Pan X M, Ma H T, Wang L 2008 Acta Metall. Sin. 44 467 (in Chinese) [赵宁, 潘学民, 马海涛, 王来 2008 金属学报 44 467]

    [11]

    Zhao N, Pan X M, Ma H T, Dong C, Guo S H, Lu W, Wang L 2008 J. Phys. Confer. Ser. 98 U141

    [12]

    Mi G B, Li P J, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 Acta Phys. Sin. 60 046601 (in Chinese) [弭光宝, 李培杰, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 60 046601]

    [13]

    Mao T, Bian X F, Xue X Y, Zhang Y N, Guo J, Sun B A 2007 Physica B 387 1

    [14]

    Nishimura S, Matsumoto S, Terashima K 2002 J. Cryst. Growth 237-239 1667

    [15]

    Yang Z X, Geng H R, Tao Z D, Sun C J 2004 J. At. Mol. Phys. 21 663 (in Chinese) [杨中喜, 耿浩然, 陶珍东, 孙春静 2004 原子分子 21 663]

    [16]

    Zhao N 2008 Ph. D. Dissertation (Dalian:Dalian University of Technology) (in Chinese) [赵宁 2008 博士学位论文 (大连:大连理工大学)]

    [17]

    Teng X Y, Min G H, Liu H L, Shi Z Q, Wang H R, Ye Y F 2001 Mater. Sci. Technol. 9 383 (in Chinese) [腾新营, 闽光辉, 刘含莲, 石志强, 王焕荣, 叶以富 2001 材料科学与工艺 9 383]

    [18]

    Iida T, Roderick I L 1993 The Physical Properties of Liquid Metals (Oxford:Clarendon Press)

    [19]

    Abtew M, Selvaduray G 2000 Mater. Sci. Eng. R 27 95

  • [1]

    Geng H R, Sun C J, Yang Z X, Wang R, Ji L L 2006 Acta Phys. Sin. 55 1320 (in Chinese) [耿浩然, 孙春静, 杨中喜, 王瑞, 吉蕾蕾 2006 55 1320]

    [2]

    Hou J X, Guo H X, Zhan C W, Tian X L, Chen X C 2006 Mater. Lett. 60 2038

    [3]

    Mi G B, Li P J, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 Acta Phys. Sin. 60 056601 (in Chinese) [弭光宝, 李培杰, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 60 056601]

    [4]

    Sun M H, Geng H R, Bian X F, Liu Y 2000 Acta Metall. Sin. 36 1134 (in Chinese) [孙民华, 耿浩然, 边秀房, 刘燕 2000 金属学报 36 1134]

    [5]

    Wang J L 2002 Microelectron. Reliabbility 42 293

    [6]

    Sun Y Y, Zhang Z Q, Wong C P 2005 Macromol. Mater. Eng. 290 1204

    [7]

    Wei X Q, Zhou L, Huang H Z, Xiao H B 2005 Mater. Lett. 59 1889

    [8]

    Egry I, Lohöfer G, Sauerland S 1993 J. Non-Cryst. Solids 156-158 830

    [9]

    Egry I 1993 Scripta Metall. Mater. 28 1273

    [10]

    Zhao N, Pan X M, Ma H T, Wang L 2008 Acta Metall. Sin. 44 467 (in Chinese) [赵宁, 潘学民, 马海涛, 王来 2008 金属学报 44 467]

    [11]

    Zhao N, Pan X M, Ma H T, Dong C, Guo S H, Lu W, Wang L 2008 J. Phys. Confer. Ser. 98 U141

    [12]

    Mi G B, Li P J, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 Acta Phys. Sin. 60 046601 (in Chinese) [弭光宝, 李培杰, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 60 046601]

    [13]

    Mao T, Bian X F, Xue X Y, Zhang Y N, Guo J, Sun B A 2007 Physica B 387 1

    [14]

    Nishimura S, Matsumoto S, Terashima K 2002 J. Cryst. Growth 237-239 1667

    [15]

    Yang Z X, Geng H R, Tao Z D, Sun C J 2004 J. At. Mol. Phys. 21 663 (in Chinese) [杨中喜, 耿浩然, 陶珍东, 孙春静 2004 原子分子 21 663]

    [16]

    Zhao N 2008 Ph. D. Dissertation (Dalian:Dalian University of Technology) (in Chinese) [赵宁 2008 博士学位论文 (大连:大连理工大学)]

    [17]

    Teng X Y, Min G H, Liu H L, Shi Z Q, Wang H R, Ye Y F 2001 Mater. Sci. Technol. 9 383 (in Chinese) [腾新营, 闽光辉, 刘含莲, 石志强, 王焕荣, 叶以富 2001 材料科学与工艺 9 383]

    [18]

    Iida T, Roderick I L 1993 The Physical Properties of Liquid Metals (Oxford:Clarendon Press)

    [19]

    Abtew M, Selvaduray G 2000 Mater. Sci. Eng. R 27 95

  • [1] 陈红梅, 李世伟, 李凯靖, 张智勇, 陈浩, 王婷婷. 向列相液晶分子结构与黏度关系研究及BPNN-QSAR模型建立.  , 2024, 73(6): 066101. doi: 10.7498/aps.73.20231763
    [2] 李春曦, 马成, 叶学民. 薄液滴在润湿性受限轨道上的热毛细迁移特性.  , 2023, 72(2): 024702. doi: 10.7498/aps.72.20221562
    [3] 张超, 布龙祥, 张智超, 樊朝霞, 凡凤仙. 丁二酸-水纳米气溶胶液滴表面张力的分子动力学研究.  , 2023, 72(11): 114701. doi: 10.7498/aps.72.20222371
    [4] 黄皓伟, 梁宏, 徐江荣. 表面张力对高雷诺数Rayleigh-Taylor不稳定性后期增长的影响.  , 2021, 70(11): 114701. doi: 10.7498/aps.70.20201960
    [5] 彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良. 液滴碰撞Janus颗粒球表面的行为特征.  , 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [6] 周浩, 李毅, 刘海, 陈鸿, 任磊生. 最优输运无网格方法及其在液滴表面张力效应模拟中的应用.  , 2021, 70(24): 240203. doi: 10.7498/aps.70.20211078
    [7] 沈婉萍, 尤仕佳, 毛鸿. 夸克介子模型的相图和表面张力.  , 2019, 68(18): 181101. doi: 10.7498/aps.68.20190798
    [8] 张颖, 郑宇, 何茂刚. 对利用动态光散射法测量颗粒粒径和液体黏度的改进.  , 2018, 67(16): 167801. doi: 10.7498/aps.67.20180271
    [9] 商继祥, 赵云波, 胡丽娜. 高温金属熔体黏度突变探索.  , 2018, 67(10): 106402. doi: 10.7498/aps.67.20172721
    [10] 叶学民, 张湘珊, 李明兰, 李春曦. 液滴在不同润湿性表面上蒸发时的动力学特性.  , 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [11] 艾旭鹏, 倪宝玉. 流体黏性及表面张力对气泡运动特性的影响.  , 2017, 66(23): 234702. doi: 10.7498/aps.66.234702
    [12] 白玲, 李大鸣, 李彦卿, 王志超, 李杨杨. 基于范德瓦尔斯表面张力模式液滴撞击疏水壁面过程的研究.  , 2015, 64(11): 114701. doi: 10.7498/aps.64.114701
    [13] 熊其玉, 董磊, 焦云龙, 刘小君, 刘焜. 应用激光蚀刻不同微织构表面的润湿性.  , 2015, 64(20): 206101. doi: 10.7498/aps.64.206101
    [14] 宋保维, 任峰, 胡海豹, 郭云鹤. 表面张力对疏水微结构表面减阻的影响.  , 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [15] 安保林, 林鸿, 刘强, 段远源. 基于圆柱定程干涉法测量气体黏度的探索.  , 2013, 62(17): 175101. doi: 10.7498/aps.62.175101
    [16] 梁刚涛, 郭亚丽, 沈胜强. 液滴低速撞击润湿球面现象观测分析.  , 2013, 62(18): 184703. doi: 10.7498/aps.62.184703
    [17] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟.  , 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [18] 危洪清, 李乡安, 龙志林, 彭建, 张平, 张志纯. 块体非晶合金的黏度与玻璃形成能力的关系.  , 2009, 58(4): 2556-2564. doi: 10.7498/aps.58.2556
    [19] 王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒. 基于成分连续变化计算黏度的合金系临界冷速模型.  , 2007, 56(3): 1543-1548. doi: 10.7498/aps.56.1543
    [20] 张蜡宝, 代富平, 熊予莹, 魏炳波. 深过冷Ni-15%Sn合金熔体表面张力研究.  , 2006, 55(1): 419-423. doi: 10.7498/aps.55.419
计量
  • 文章访问数:  7009
  • PDF下载量:  776
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-16
  • 修回日期:  2012-12-24
  • 刊出日期:  2013-04-05

/

返回文章
返回
Baidu
map