-
采用射频等离子体辅助分子束外延技术生长得到了In组分精确可控且高质量的InxGa1-xN (x ≤ 0.2) 外延薄膜. 生长温度为580 ℃的In0.19Ga0.81N薄膜(10.2) 面非对称衍射峰的半高宽只有587弧秒, 背景电子浓度为3.96× 1018/cm3. 在富金属生长区域, Ga束流超过N的等效束流时, In组分不为零, 即Ga并没有全部并入外延层; 另外, 稍微增加In束流会降低InGaN的晶体质量.
-
关键词:
- InGaN 外延薄膜 /
- 射频等离子体辅助分子束外延 /
- In 并入 /
- 晶体质量
Growth behaviors of InxGa1-xN (x ≤ 0.2) materials by plasma-assisted molecular beam epitaxy (PA-MBE) are investigated in detail. A precise control of the incorporation of indium into InxGa1-xN at a growth temperature of 580 ℃ is realized. The In0.19Ga0.81N shows a very narrow width of 587 arcsec for the (10.2) asymmetrical reflection from high-resolution X-ray diffraction and the background electronic concentration is 3.96× 1018 cm3. In the region of metal-rich growth, no negligible indium incorporation is observed even if the Ga beam flux is much larger than the equivalent N flux. This growth behavior might be ascribed to an incomplete Ga incorporation during InGaN growth. In addition, a slight increase of In flux results in crystalline quality degradation of InGaN epilayers.-
Keywords:
- InGaN epilayer /
- plasma-assisted molecular beam epitaxy /
- indium incorporation /
- crystalline quality
[1] Osamura K, Ohtsuki A, Shingu P H, Murakami Y, Nakajima K 1972 Solid State Commun. 11 617
[2] Mukai T, Yamadam M, Nakamuras S 1999 Jpn. J. Appl. Phys. 38 3976
[3] Nakamura S, Senoh M, Nagahama S I, Iwasa N, Matsushita T 2000 Appl. Phys. Lett. 76 22
[4] Jano O, Honsberg C, Asghar A, Nicol D, Ferguson L, Doolittle A, Kurtz S 2005 31st IEEE Photovolatic Specialists Conference Orlando, United States of America, Jan. 3-7, 2005 p37
[5] Zhang D Y, Zheng X H, Li X F, Wu Y Y, Wang H, Wang J F, Yang H 2012 Chin. Phys. B 21 087802
[6] Bhuiyan A G, Hashimoto A, Yamamoto A 2003 J. Appl. Phys. 94 2779
[7] Kraus A, Hammadi S, Hisek J, Buss R, Jonen H, Bremers H, Rossow U, Sakalauskas E, Goldhahn R, Hangleiter A 2011 J. Cryst. Growth. 323 72
[8] Moseley M, Lowder J, Billing D, Doolittle W A 2010 Appl. Phys. Lett. 97 191902
[9] Zhang D Y, Zheng X H, Li X F, Wu Y Y, Wang J F, Yang H 2012 J. Semicond. 33 103001
[10] Heying B, Smorchkova L, Poblen C 2000 Appl. Phys. Lett. 77 2886
[11] Huang J S, Dong X, Liu X L, Xu Z Y, Ge W K 2003 Acta Phys. Sin. 52 2632 (in Chinese) [黄劲松, 董逊, 刘祥林, 徐仲英, 葛维琨 2003 52 2632]
[12] Li S F, Schörmann J, Pawlis A, As D J, Lischaka K 2005 Microelectron. J. 36 963
[13] Adelmann C, Langer R, Feuillet G, Daudin B 1999 Appl. Phys. Lett. 75 3518
[14] Storm D F 2001 J. Appl. Phys. 89 2452
[15] Böttcher T, Einfeldt S, Kichner V, Figge S, Heinke H 1998 Appl. Phys. Lett. 73 3232
[16] Li S F, Yang H, Xu D P, Zhao D G, Sun X L, Wang Y T, Zhang S M 2000 Chin. J. Semicond. 21 549 (in Chinese) [李顺峰, 杨辉, 徐大鹏, 赵德刚, 孙小玲, 王玉田, 张书明 2000 半导体学报 21 549]
[17] Bedair S M, Mcintosh F G, Roberts J C, Piner E L, Boutros K S, El-Masry N A 1997 J. Cryst. Growth 178 32
[18] Zhang D Y 2012 Ph. D. Dissertation (Beijing:Graduate University of Chinese Academy of Sciences) (in Chinese) [张东炎 2012 博士学位论文 (北京:中国科学院研究生院)]
[19] Zheng X H, Chen H, Yan Z B, Han Y J, Yu H B, Li D S, Huang Q, Zhou J M 2003 J. Cryst. Growth 255 63
[20] Soh C B, Chua S J, Lim H F, Chi A Z, Tripathy S, Liu W 2004 J. Appl. Phys. 96 1341
[21] Neugebauer J, Van de Walle C G 1996 Appl. Phys. Lett. 69 503
[22] Nakamura S, Lwasa N 1992 Jpn. J. Appl. Phys. 31 1258
[23] Li Y Z, Xing Y H, Han J, Chen X, Deng X G, Xu C 2012 Chin. J. Luminescence 33 1085 (in Chinese) [李影智, 邢艳辉, 韩军, 陈翔, 邓旭光, 徐晨 2012 发光学报 33 1085]
-
[1] Osamura K, Ohtsuki A, Shingu P H, Murakami Y, Nakajima K 1972 Solid State Commun. 11 617
[2] Mukai T, Yamadam M, Nakamuras S 1999 Jpn. J. Appl. Phys. 38 3976
[3] Nakamura S, Senoh M, Nagahama S I, Iwasa N, Matsushita T 2000 Appl. Phys. Lett. 76 22
[4] Jano O, Honsberg C, Asghar A, Nicol D, Ferguson L, Doolittle A, Kurtz S 2005 31st IEEE Photovolatic Specialists Conference Orlando, United States of America, Jan. 3-7, 2005 p37
[5] Zhang D Y, Zheng X H, Li X F, Wu Y Y, Wang H, Wang J F, Yang H 2012 Chin. Phys. B 21 087802
[6] Bhuiyan A G, Hashimoto A, Yamamoto A 2003 J. Appl. Phys. 94 2779
[7] Kraus A, Hammadi S, Hisek J, Buss R, Jonen H, Bremers H, Rossow U, Sakalauskas E, Goldhahn R, Hangleiter A 2011 J. Cryst. Growth. 323 72
[8] Moseley M, Lowder J, Billing D, Doolittle W A 2010 Appl. Phys. Lett. 97 191902
[9] Zhang D Y, Zheng X H, Li X F, Wu Y Y, Wang J F, Yang H 2012 J. Semicond. 33 103001
[10] Heying B, Smorchkova L, Poblen C 2000 Appl. Phys. Lett. 77 2886
[11] Huang J S, Dong X, Liu X L, Xu Z Y, Ge W K 2003 Acta Phys. Sin. 52 2632 (in Chinese) [黄劲松, 董逊, 刘祥林, 徐仲英, 葛维琨 2003 52 2632]
[12] Li S F, Schörmann J, Pawlis A, As D J, Lischaka K 2005 Microelectron. J. 36 963
[13] Adelmann C, Langer R, Feuillet G, Daudin B 1999 Appl. Phys. Lett. 75 3518
[14] Storm D F 2001 J. Appl. Phys. 89 2452
[15] Böttcher T, Einfeldt S, Kichner V, Figge S, Heinke H 1998 Appl. Phys. Lett. 73 3232
[16] Li S F, Yang H, Xu D P, Zhao D G, Sun X L, Wang Y T, Zhang S M 2000 Chin. J. Semicond. 21 549 (in Chinese) [李顺峰, 杨辉, 徐大鹏, 赵德刚, 孙小玲, 王玉田, 张书明 2000 半导体学报 21 549]
[17] Bedair S M, Mcintosh F G, Roberts J C, Piner E L, Boutros K S, El-Masry N A 1997 J. Cryst. Growth 178 32
[18] Zhang D Y 2012 Ph. D. Dissertation (Beijing:Graduate University of Chinese Academy of Sciences) (in Chinese) [张东炎 2012 博士学位论文 (北京:中国科学院研究生院)]
[19] Zheng X H, Chen H, Yan Z B, Han Y J, Yu H B, Li D S, Huang Q, Zhou J M 2003 J. Cryst. Growth 255 63
[20] Soh C B, Chua S J, Lim H F, Chi A Z, Tripathy S, Liu W 2004 J. Appl. Phys. 96 1341
[21] Neugebauer J, Van de Walle C G 1996 Appl. Phys. Lett. 69 503
[22] Nakamura S, Lwasa N 1992 Jpn. J. Appl. Phys. 31 1258
[23] Li Y Z, Xing Y H, Han J, Chen X, Deng X G, Xu C 2012 Chin. J. Luminescence 33 1085 (in Chinese) [李影智, 邢艳辉, 韩军, 陈翔, 邓旭光, 徐晨 2012 发光学报 33 1085]
计量
- 文章访问数: 6662
- PDF下载量: 669
- 被引次数: 0