搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Si面4H-SiC衬底上外延石墨烯近平衡态制备

蔚翠 李佳 刘庆彬 蔡树军 冯志红

引用本文:
Citation:

Si面4H-SiC衬底上外延石墨烯近平衡态制备

蔚翠, 李佳, 刘庆彬, 蔡树军, 冯志红

Quasi-equilibrium growth of monolayer epitaxial graphene on SiC (0001)

Yu Cui, Li Jia, Liu Qing-Bin, Cai Shu-Jun, Feng Zhi-Hong
PDF
导出引用
  • SiC热解法是制备大面积、高质量石墨烯的理想选择之一. 外延石墨烯的晶体质量仍是制约其应用的关键因素之一. 本文通过SiC热解法在4H-SiC(0001)衬底上制备单层外延石墨烯. 通过引入氩气惰性气氛和硅蒸气,使SiC 衬底表面的Si原子升华与返回概率接近平衡,外延石墨烯生长速率大大减慢,单层石墨烯的生长时间从15 min延长至75 min. 测试分析表明,生长速率减慢,外延石墨烯中缺陷减少,晶体质量提高,使得外延石墨烯的电性能都得到改善,单层外延石墨烯的最高载流子迁移率达到1200 cm2/Vs ,方阻604 /□. 以上结果表明,控制生长气氛,减慢生长速率是实现高质量外延石墨烯的可行途径之一.
    Sublimation of SiC substrates is a promising way to prepare high-quality graphene on large scale. Nowadays, growth of high-quality epitaxial graphene is still a crucial issue. In this work, monolayer epitaxial graphene is grown on Si-terminated 4H-SiC (0001) substrate. By introducing argon inert gas and silicon vapor as background atmosphere, the Si evaporation rate and condensation rate on the SiC surface is close to equilibrium and the growth of monolayer epitaxial graphene with very low speed is realized. The growth duration of monolayer epitaxial graphene is prolonged to 75 minutes from 15 minutes. It is found that the disorder-induced Raman D peak shows an obvious decrease as the growth speed decreases, indicating the improvement of crystal quality, which makes the electrical properties of the monolayer epitaxial graphene is improved. The maximum carrier mobility and sheet resistance have reached 1200 cm2/Vs and 604 /, respectively. The above results indicate that slowing down of growth speed by controlling of growth atmosphere is an efficient way to prepare high-quality epitaxial graphene.
    • 基金项目: 中国博士后基金(批准号:2012M510771)和国家自然科学基金(批准号:61306006)资助的课题.
    • Funds: Project supported by the Foundation of China Post Doctor (Grant No. 2012M510771) and the National Natural Science Foundation of China (Grant No. 61306006).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [3]

    Avouris P, Chen Z, Perebeinos V 2007 Nature Nanotech. 2 605

    [4]

    Geim A K, Novoselov K S 2007 Nature Mater. 6 183

    [5]

    Yang Z, Gao R, Hu N, Chai J, Cheng Y, Zhang L, Wei H, Kong E Siu-Wai Zhang Y 2012 Nano-Micro Lett. 4 1

    [6]

    Yin W H, Han Q, Yang X H 2012Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 61 248502]

    [7]

    Zuo Z G, Wang P, Ling F Ri Liu J S, Yao J Q 2013 Chin. Phys. B 22 097304

    [8]

    Zeng M, Wang W L, Bai X D 2013 Chin. Phys. B 22 098105

    [9]

    Virojanadara C, Syvaejarvi M, Yakimova R, Johansson L I, Zakharov A A, Balasubramanian T 2008 Phys Rev B 78 245403

    [10]

    Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov S A, Roehrl J, Rotenberg E, Schmid A K, Waldmann D, Weber H B, Seyller T 2009 Nature Mater 8 203

    [11]

    Shen T, Gu J J, Xu M, Wu Y Q, Bolen M L, Capano M A, Engel L W, Ye P D 2009 Appl. Phys Lett 95 172105

    [12]

    Li J, Wang L, Feng Z H, Yu C, Liu Q B, Dun S B, Cai S J 2012 Chin. Phys. B 21 097304

    [13]

    Yu C, Li J, Liu Q B, Dun S B, He Z Z, Zhang X W, Cai S J, Feng Z H 2013 Appl. Phys Lett 102 013107

    [14]

    Ouerghi A, Silly M G, Marangolo M, Mathieu C, Eddrief M, Picher M, Sirotti F, Moussaoui S El, Belkhou R 2012 ACS Nano 6 6075

    [15]

    Kimura K, Shoji K, Yamamoto Y, Norimatsu W, Kusunoki M 2013 Phys Rev B 87 075431

    [16]

    Kang C Y, Fan L L, Chen S, Liu Z L, Xu P S, Zou C W Appl. Phys Lett 100 251604

    [17]

    Tanabe S, Sekine Y, Kageshima H, Nagase M, Hibino H 2011 Phys Rev B 84 115458

    [18]

    Tromp R M, Hannon J B 2009 Phys. Rev. Lett. 102 106104

    [19]

    Heer W A de, Berger C, Wu X, First P N, Conrad E H, Li X, Li T, Sprinkle M, Hass J, Sadowski M L, Potemski M, Martinez G 2007 Solid State Commun. 143 92

    [20]

    Lin Y M, Farmer D B, Jenkins K A, Wu Y Q, Tedesco J L, Myers-Ward R L, Eddy C R, Gaskill D K, Dimitrakopoulos C, Avouris P 2011 IEEE Elec. Devi. Lett 32 10

    [21]

    Li Q Q, Han W P, Zhao W J, Lu Y, Zhang X, Feng Z H, Li J 2013 Acta Phys. Sin. 62 137801 (in Chinese) [厉巧巧, 韩文鹏, 赵伟杰, 鲁妍, 张昕, 谭平恒, 冯志红, 李佳 2013 62 137801]

    [22]

    Graf D, Molitor F Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L 2007 Nano Lett. 7 238

    [23]

    Ni Z H, Wang Y Y, Yu T, Shen Z X 2009 Nano Res. 1 273

    [24]

    Lee D S, Riedl C, Krauss B, Klitzing K v, Starke U, Smet J H 2008 Nano Lett. 8 4320

    [25]

    Ferrari A C 2007 Solid State Commun. 143 47

    [26]

    Dimitrakopoulos C, Liu G, McArdle T J, Grill A, Smith J T, Farmer D, Lin Q, Pfeiffer D, Avouris Ph 2013 Graphene Week Chemnitz, Germany, June 2–7, 2013 p84

    [27]

    Das A, Pisana S, Chakraborty B, Piscanec S, K. Saha S, Waghmare U V, Novoselov K S, Krishnamurthy H R, Geim A K, Ferrari A C Sood A K 2008 Nature Nanotech. 3 210

    [28]

    Mohiuddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D M, Galiotis C, Marzari N, Novoselov K S, Geim A K, Ferrari A C 2009 Phys. Rev. B 79 205433

    [29]

    Mayorov A S, Elias D C, Mukhin I S, Morozov S V, Ponomarenko L A, Novoselov K S, Geim A K, Gorbachev R V 2012 Nano Lett. 12 4629

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [3]

    Avouris P, Chen Z, Perebeinos V 2007 Nature Nanotech. 2 605

    [4]

    Geim A K, Novoselov K S 2007 Nature Mater. 6 183

    [5]

    Yang Z, Gao R, Hu N, Chai J, Cheng Y, Zhang L, Wei H, Kong E Siu-Wai Zhang Y 2012 Nano-Micro Lett. 4 1

    [6]

    Yin W H, Han Q, Yang X H 2012Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 61 248502]

    [7]

    Zuo Z G, Wang P, Ling F Ri Liu J S, Yao J Q 2013 Chin. Phys. B 22 097304

    [8]

    Zeng M, Wang W L, Bai X D 2013 Chin. Phys. B 22 098105

    [9]

    Virojanadara C, Syvaejarvi M, Yakimova R, Johansson L I, Zakharov A A, Balasubramanian T 2008 Phys Rev B 78 245403

    [10]

    Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov S A, Roehrl J, Rotenberg E, Schmid A K, Waldmann D, Weber H B, Seyller T 2009 Nature Mater 8 203

    [11]

    Shen T, Gu J J, Xu M, Wu Y Q, Bolen M L, Capano M A, Engel L W, Ye P D 2009 Appl. Phys Lett 95 172105

    [12]

    Li J, Wang L, Feng Z H, Yu C, Liu Q B, Dun S B, Cai S J 2012 Chin. Phys. B 21 097304

    [13]

    Yu C, Li J, Liu Q B, Dun S B, He Z Z, Zhang X W, Cai S J, Feng Z H 2013 Appl. Phys Lett 102 013107

    [14]

    Ouerghi A, Silly M G, Marangolo M, Mathieu C, Eddrief M, Picher M, Sirotti F, Moussaoui S El, Belkhou R 2012 ACS Nano 6 6075

    [15]

    Kimura K, Shoji K, Yamamoto Y, Norimatsu W, Kusunoki M 2013 Phys Rev B 87 075431

    [16]

    Kang C Y, Fan L L, Chen S, Liu Z L, Xu P S, Zou C W Appl. Phys Lett 100 251604

    [17]

    Tanabe S, Sekine Y, Kageshima H, Nagase M, Hibino H 2011 Phys Rev B 84 115458

    [18]

    Tromp R M, Hannon J B 2009 Phys. Rev. Lett. 102 106104

    [19]

    Heer W A de, Berger C, Wu X, First P N, Conrad E H, Li X, Li T, Sprinkle M, Hass J, Sadowski M L, Potemski M, Martinez G 2007 Solid State Commun. 143 92

    [20]

    Lin Y M, Farmer D B, Jenkins K A, Wu Y Q, Tedesco J L, Myers-Ward R L, Eddy C R, Gaskill D K, Dimitrakopoulos C, Avouris P 2011 IEEE Elec. Devi. Lett 32 10

    [21]

    Li Q Q, Han W P, Zhao W J, Lu Y, Zhang X, Feng Z H, Li J 2013 Acta Phys. Sin. 62 137801 (in Chinese) [厉巧巧, 韩文鹏, 赵伟杰, 鲁妍, 张昕, 谭平恒, 冯志红, 李佳 2013 62 137801]

    [22]

    Graf D, Molitor F Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L 2007 Nano Lett. 7 238

    [23]

    Ni Z H, Wang Y Y, Yu T, Shen Z X 2009 Nano Res. 1 273

    [24]

    Lee D S, Riedl C, Krauss B, Klitzing K v, Starke U, Smet J H 2008 Nano Lett. 8 4320

    [25]

    Ferrari A C 2007 Solid State Commun. 143 47

    [26]

    Dimitrakopoulos C, Liu G, McArdle T J, Grill A, Smith J T, Farmer D, Lin Q, Pfeiffer D, Avouris Ph 2013 Graphene Week Chemnitz, Germany, June 2–7, 2013 p84

    [27]

    Das A, Pisana S, Chakraborty B, Piscanec S, K. Saha S, Waghmare U V, Novoselov K S, Krishnamurthy H R, Geim A K, Ferrari A C Sood A K 2008 Nature Nanotech. 3 210

    [28]

    Mohiuddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D M, Galiotis C, Marzari N, Novoselov K S, Geim A K, Ferrari A C 2009 Phys. Rev. B 79 205433

    [29]

    Mayorov A S, Elias D C, Mukhin I S, Morozov S V, Ponomarenko L A, Novoselov K S, Geim A K, Gorbachev R V 2012 Nano Lett. 12 4629

  • [1] 贾子源, 杨玉婷, 季立宇, 杭志宏. 类石墨烯复杂晶胞光子晶体中的确定性界面态.  , 2017, 66(22): 227802. doi: 10.7498/aps.66.227802
    [2] 王波, 房玉龙, 尹甲运, 刘庆彬, 张志荣, 郭艳敏, 李佳, 芦伟立, 冯志红. 表面预处理对石墨烯上范德瓦耳斯外延生长GaN材料的影响.  , 2017, 66(24): 248101. doi: 10.7498/aps.66.248101
    [3] 杜一帅, 康维, 郑瑞伦. 外延石墨烯电导率和费米速度随温度变化规律研究.  , 2017, 66(1): 014701. doi: 10.7498/aps.66.014701
    [4] 谢伟华, 尹思凡, 李博, 曹艳平, 冯西桥. 管腔结构软组织的三维形貌失稳.  , 2016, 65(18): 188704. doi: 10.7498/aps.65.188704
    [5] 郭瑞花, 卢太平, 贾志刚, 尚林, 张华, 王蓉, 翟光美, 许并社. 界面形核时间对GaN薄膜晶体质量的影响.  , 2015, 64(12): 127305. doi: 10.7498/aps.64.127305
    [6] 祝梦遥, 鲁军, 马佳淋, 李利霞, 王海龙, 潘东, 赵建华. 高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长.  , 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [7] 张李骊, 刘战辉, 修向前, 张荣, 谢自力. 氢化物气相外延生长高质量GaN膜生长参数优化研究.  , 2013, 62(20): 208101. doi: 10.7498/aps.62.208101
    [8] 吴渊渊, 郑新和, 王海啸, 甘兴源, 文瑜, 王乃明, 王建峰, 杨辉. 高质量InGaN的等离子体辅助分子束外延生长和In的反常并入行为.  , 2013, 62(8): 086101. doi: 10.7498/aps.62.086101
    [9] 乔盼盼, 艾合买提·阿不力孜, 蔡江涛, 路俊哲, 麦麦提依明·吐孙, 日比古·买买提明. 利用热平衡态超导电荷量子比特实现量子隐形传态.  , 2012, 61(24): 240303. doi: 10.7498/aps.61.240303
    [10] 何 萌, 刘国珍, 仇 杰, 邢 杰, 吕惠宾. 用激光分子束外延在Si衬底上外延生长高质量的TiN薄膜.  , 2008, 57(2): 1236-1240. doi: 10.7498/aps.57.1236
    [11] 丁才蓉, 王 冰, 杨国伟, 汪河洲. 催化剂对热蒸发法生长SnO2纳米晶体质量的影响及其发光光谱研究.  , 2007, 56(3): 1775-1778. doi: 10.7498/aps.56.1775
    [12] 杨吉军, 徐可为. 多晶薄膜表面粗化与生长方式转变.  , 2007, 56(2): 1110-1115. doi: 10.7498/aps.56.1110
    [13] 杨吉军, 徐可为. 生长初期Ta膜的表面动态演化行为.  , 2007, 56(10): 6023-6027. doi: 10.7498/aps.56.6023
    [14] 彭冬生, 冯玉春, 王文欣, 刘晓峰, 施 炜, 牛憨笨. 一种外延生长高质量GaN薄膜的新方法.  , 2006, 55(7): 3606-3610. doi: 10.7498/aps.55.3606
    [15] 胡昉, 张寒洁, 吕 斌, 陶永升, 李海洋, 鲍世宁, 何丕模, 王学森. Ge在Ru(0001)表面上生长及其性质研究.  , 2005, 54(3): 1330-1333. doi: 10.7498/aps.54.1330
    [16] 李宇杰, 张晓娜, 介万奇. Cd1-xZnxTe晶体退火条件的选择及Zn压对退火晶体质量的影响.  , 2001, 50(12): 2327-2334. doi: 10.7498/aps.50.2327
    [17] 颜森林, 伍仕宝, 逄焕刚, 孙小菡, 张明德. 混沌系统的注入反馈控制与动态控制方法研究.  , 2001, 50(3): 428-434. doi: 10.7498/aps.50.428
    [18] 王宏霞, 虞厥邦. 细胞神经网络平衡态的稳定性分析.  , 2001, 50(12): 2303-2306. doi: 10.7498/aps.50.2303
    [19] 李超荣, 朱爱军, 戴道扬, 麦振洪. SrTiO3基片的晶体质量及表面粗糙结构的X射线研究.  , 1997, 46(9): 1758-1763. doi: 10.7498/aps.46.1758
    [20] 冯克安. 非平衡态相变的两例——光学参量振荡和激光.  , 1978, 27(3): 322-330. doi: 10.7498/aps.27.322
计量
  • 文章访问数:  7542
  • PDF下载量:  582
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-08
  • 修回日期:  2013-12-09
  • 刊出日期:  2014-02-05

/

返回文章
返回
Baidu
map