搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机双指数记忆耗散系统的非马尔可夫扩散

谢文贤 许鹏飞 蔡力 李东平

引用本文:
Citation:

随机双指数记忆耗散系统的非马尔可夫扩散

谢文贤, 许鹏飞, 蔡力, 李东平

Non-Markovian diffusion of the stochastic system with a biexponentical dissipative memory kernel

Xie Wen-Xian, Xu Peng-Fei, Cai Li, Li Dong-Ping
PDF
导出引用
  • 针对具有双指数耗散记忆核函数的两自由度耦合系统, 本文利用Laplace变换导出了热宽带噪声激励下该系统响应二阶矩的解析表达式. 并观察到位移二阶矩不同于单自由度情形下的反常扩散:x2(t)> ∝ tα (0αα≠1), 而是随时间及噪声等参数变化呈现普遍的振荡扩散现象.分析可得, 阻尼耦合因子B使粒子远离简谐势场的束缚, x2(t)>随B的增大扩散加剧而摩擦系数增大却使其趋于平稳状态.进一步, 若两热噪声互关联时, 较小的互关联时间对二阶矩的影响较大, 反之作用较小. 伴随互关联强度递增, 位移二阶矩的扩散加剧, 位移间的相关性加强, 与物理直观相符.
    In this paper, second-moments of the responses are analytically solved by the Laplace transform in a coupling two-degree-of-freedom system with a biexponentical dissipative memory kernel function driven by a thermal broadband noise. The mean square displacement x2(t)> is different from anomalous diffusion (i.e. x2(t)> ∝ tα (0αα≠1)), which is produced by the single-degree-of-freedom generalized Langevin equation. The oscillation-diffusion of x2(t)> with the change of time and noise parameters is observed generally. According to our analysis, a particle confined by the harmonic potential can escape with the help of the coupling-damping factor B. The diffusion of x2(t)> aggravates with B increasing. However, x2(t)> tends to the stationary state with the increase of the friction coefficient Further, if the two thermal noises are in cross-correlation, smaller cross-correlation time has a deeper influence on second-moments. Meanwhile, the diffusion aggravates and the cross-correlation between two displacements strengthens markedly with cross-correlation strength increasing. It is consistent with physical intuition.
    • 基金项目: 国家自然科学基金(批准号:11101333)、陕西省自然科学基金(批准号:2011GQ1018)和西北工业大学基础研究基金(批准号:JC201152)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11101333), the Natural Science Foundation of Shaanxi, China (Grant No. 2011GQ1018), and the Northwestern Polytechnical University Foundation for Fundamental Research, China (Grant No. JC201152).
    [1]

    Bao J D 2005 Progress Phys. 25 359 (in Chinese) [包景东 2005 物理学进展 25 359]

    [2]

    Zhuo Y Z 2004 Nuclear Phys. Rev. 21 83 (in Chinese) [卓益忠 2004 原子核物理评论 21 83]

    [3]

    Wang K G, Tokuyama M 1999 Physica A 265 341

    [4]

    Bao J D, Zhou Y, L K 2006 Phys. Rev. E 74 041125

    [5]

    Siegle P, Goychuk I, Hänggi P 2010 Phys. Rev. Lett. 105 100602

    [6]

    Porrá J M, Wang K G, Masoliver J 1996 Phys. Rev. E 53 5872

    [7]

    Viñales A D, Despósito M A 2006 Phys. Rev. E 73 016111

    [8]

    Bao J D, Bai Z W 2005 Chin. Phys. Lett. 22 1845

    [9]

    Bao J D, Zhuo Y Z 2003 Phys. Rev. Lett. 91 138104

    [10]

    Siegle P, Goychuk I, Talkner P, Hänggi P 2010 Phys. Rev. E 81 011136

    [11]

    Bao J D 2004 J. Stat. Phys. 114 503

    [12]

    Wang K G 1992 Phys. Rev. A 45 833

    [13]

    Bao J D, Song Y L, Ji Q, Zhuo Y Z 2005 Phys. Rev. E 72 011113

    [14]

    Bao J D, Zhuo Y Z, Oliveira F A, Hänggi P 2006 Phys. Rev. E 74 061111

    [15]

    Viñales A D, Wang K G, Despósito M A 2009 Phys. Rev. E 80 011101

    [16]

    L K, Bao J D 2005 Phys. Rev. E 72 067701

    [17]

    Plyukhin A V 2011 Phys. Rev. E 83 062102

    [18]

    Neiman A, Sung W 1996 Phys. Lett. A 223 341

    [19]

    Bai W S M, Peng H, Tu Z, Ma H 2012 Acta Phys. Sin. 61 210501 (in Chinese) [白文斯密, 彭皓, 屠浙, 马洪 2012 61 210501]

    [20]

    Zhong S C, Gao S L, Wei K, Ma H 2012 Acta Phys. Sin. 61 170501 (in Chinese) [钟苏川, 高仕龙, 韦鹍, 马洪 2012 61 170501]

    [21]

    Xu W, Jin Y F, Xu M, Li W 2005 Acta Phys. Sin. 54 5027 (in Chinese) [徐伟, 靳艳飞, 徐猛, 李伟 2005 54 5027]

    [22]

    Jin Y F, Hu H Y 2009 Acta Phys. Sin. 58 2895 (in Chinese) [靳艳飞, 胡海岩 2009 58 2895]

    [23]

    Jin Y F 2012 Physica A 391 1928

    [24]

    Zeng C H, Wang H, Wang H T 2011 Chin. Phys. B 20 050502

    [25]

    Fuliński A, Telejko T 1991 Phys. Lett. A 152 11

    [26]

    Zhang N M, Xu W, Wang C Q 2007 Acta Phys. Sin. 56 5083 (in Chinese) [张娜敏, 徐伟, 王朝庆 2007 56 5083]

    [27]

    Jiang L L, Luo X Q, Wu D, Zhu S Q 2012 Chin. Phys. B 21 090503

    [28]

    Wang Y X, Zhao N R, Yan Y J 2012 Phys. Rev. E 85 041142

    [29]

    Roy D, Kumar N 2008 Phys. Rev. E 78 052102

    [30]

    Kumar N 2012 Phys. Rev. E 85 011114

  • [1]

    Bao J D 2005 Progress Phys. 25 359 (in Chinese) [包景东 2005 物理学进展 25 359]

    [2]

    Zhuo Y Z 2004 Nuclear Phys. Rev. 21 83 (in Chinese) [卓益忠 2004 原子核物理评论 21 83]

    [3]

    Wang K G, Tokuyama M 1999 Physica A 265 341

    [4]

    Bao J D, Zhou Y, L K 2006 Phys. Rev. E 74 041125

    [5]

    Siegle P, Goychuk I, Hänggi P 2010 Phys. Rev. Lett. 105 100602

    [6]

    Porrá J M, Wang K G, Masoliver J 1996 Phys. Rev. E 53 5872

    [7]

    Viñales A D, Despósito M A 2006 Phys. Rev. E 73 016111

    [8]

    Bao J D, Bai Z W 2005 Chin. Phys. Lett. 22 1845

    [9]

    Bao J D, Zhuo Y Z 2003 Phys. Rev. Lett. 91 138104

    [10]

    Siegle P, Goychuk I, Talkner P, Hänggi P 2010 Phys. Rev. E 81 011136

    [11]

    Bao J D 2004 J. Stat. Phys. 114 503

    [12]

    Wang K G 1992 Phys. Rev. A 45 833

    [13]

    Bao J D, Song Y L, Ji Q, Zhuo Y Z 2005 Phys. Rev. E 72 011113

    [14]

    Bao J D, Zhuo Y Z, Oliveira F A, Hänggi P 2006 Phys. Rev. E 74 061111

    [15]

    Viñales A D, Wang K G, Despósito M A 2009 Phys. Rev. E 80 011101

    [16]

    L K, Bao J D 2005 Phys. Rev. E 72 067701

    [17]

    Plyukhin A V 2011 Phys. Rev. E 83 062102

    [18]

    Neiman A, Sung W 1996 Phys. Lett. A 223 341

    [19]

    Bai W S M, Peng H, Tu Z, Ma H 2012 Acta Phys. Sin. 61 210501 (in Chinese) [白文斯密, 彭皓, 屠浙, 马洪 2012 61 210501]

    [20]

    Zhong S C, Gao S L, Wei K, Ma H 2012 Acta Phys. Sin. 61 170501 (in Chinese) [钟苏川, 高仕龙, 韦鹍, 马洪 2012 61 170501]

    [21]

    Xu W, Jin Y F, Xu M, Li W 2005 Acta Phys. Sin. 54 5027 (in Chinese) [徐伟, 靳艳飞, 徐猛, 李伟 2005 54 5027]

    [22]

    Jin Y F, Hu H Y 2009 Acta Phys. Sin. 58 2895 (in Chinese) [靳艳飞, 胡海岩 2009 58 2895]

    [23]

    Jin Y F 2012 Physica A 391 1928

    [24]

    Zeng C H, Wang H, Wang H T 2011 Chin. Phys. B 20 050502

    [25]

    Fuliński A, Telejko T 1991 Phys. Lett. A 152 11

    [26]

    Zhang N M, Xu W, Wang C Q 2007 Acta Phys. Sin. 56 5083 (in Chinese) [张娜敏, 徐伟, 王朝庆 2007 56 5083]

    [27]

    Jiang L L, Luo X Q, Wu D, Zhu S Q 2012 Chin. Phys. B 21 090503

    [28]

    Wang Y X, Zhao N R, Yan Y J 2012 Phys. Rev. E 85 041142

    [29]

    Roy D, Kumar N 2008 Phys. Rev. E 78 052102

    [30]

    Kumar N 2012 Phys. Rev. E 85 011114

  • [1] 蒋世民, 贾欣燕, 樊代和. 非马尔科夫环境中Werner态的量子非局域关联检验研究.  , 2024, 73(16): 160301. doi: 10.7498/aps.73.20240450
    [2] 李德彰, 卢智伟, 赵宇军, 杨小宝. 自旋半经典朗之万方程一般形式的探讨.  , 2023, 72(14): 140501. doi: 10.7498/aps.72.20230106
    [3] 贾晓菲, 魏群, 张文鹏, 何亮, 武振华. 10 nm金属氧化物半导体场效应晶体管中的热噪声特性分析.  , 2023, 72(22): 227303. doi: 10.7498/aps.72.20230661
    [4] 熊凡, 陈永聪, 敖平. 热噪声环境下偶极场驱动的量子比特动力学.  , 2023, 72(17): 170302. doi: 10.7498/aps.72.20230625
    [5] 赵雯, 陈伟, 罗尹虹, 贺朝会, 沈忱. 离子径迹特征与纳米反相器链单粒子瞬态的关联性研究.  , 2021, 70(12): 126102. doi: 10.7498/aps.70.20210192
    [6] 黄军超, 汪凌珂, 段怡菲, 黄亚峰, 刘亮, 李唐. 光纤1/f 热噪声的实验研究.  , 2019, 68(5): 054205. doi: 10.7498/aps.68.20181838
    [7] 贺志, 李莉, 姚春梅, 李艳. 利用量子相干性判定开放二能级系统中非马尔可夫性.  , 2015, 64(14): 140302. doi: 10.7498/aps.64.140302
    [8] 卢宏, 吕艳, 包景东. 基于分数阶环境热浴的非各态历经判据研究.  , 2015, 64(17): 170502. doi: 10.7498/aps.64.170502
    [9] 贾美美, 张国山, 牛弘. 基于改善关联性Buck变换器的混沌控制.  , 2013, 62(13): 130503. doi: 10.7498/aps.62.130503
    [10] 孟振华, 李俊斌, 郭永权, 王义. 稀土元素的价电子结构和熔点、结合能的关联性.  , 2012, 61(10): 107101. doi: 10.7498/aps.61.107101
    [11] 蔡诚俊, 方卯发, 肖兴, 黄江. 非马尔可夫环境下经典场驱动Jaynes-Cummings模型中原子的熵压缩.  , 2012, 61(21): 210303. doi: 10.7498/aps.61.210303
    [12] 支蓉, 龚志强, 王启光, 熊开国. 时间滞后对全球温度场关联性的影响.  , 2011, 60(8): 089202. doi: 10.7498/aps.60.089202
    [13] 蒋泽南, 房超, 孙立风. 朗之万方程及其在蛋白质折叠动力学中的应用.  , 2011, 60(6): 060502. doi: 10.7498/aps.60.060502
    [14] 侯威, 杨萍, 郑志海, 龚志强. 基于联合熵的旱涝空间场关联性研究.  , 2009, 58(3): 2106-2112. doi: 10.7498/aps.58.2106
    [15] 郑力明, 刘颂豪, 王发强. 非马尔可夫环境下原子的几何相位演化.  , 2009, 58(4): 2430-2434. doi: 10.7498/aps.58.2430
    [16] 安兴涛, 李玉现, 刘建军. 介观物理系统中的噪声.  , 2007, 56(7): 4105-4112. doi: 10.7498/aps.56.4105
    [17] 周小安, 钱恭斌, 丘水生. 基于改善空间关联性的混沌控制.  , 2006, 55(8): 3974-3978. doi: 10.7498/aps.55.3974
    [18] 陈小余. 单模费米热噪声信道量子容量的估计.  , 2001, 50(7): 1217-1220. doi: 10.7498/aps.50.1217
    [19] 董传华. 热噪声的相干态和压缩态中的高阶涨落.  , 1998, 47(12): 1989-1997. doi: 10.7498/aps.47.1989
    [20] 周光召, 苏肇冰, 郝柏林, 于渌. 非平衡统计场论与临界动力学(Ⅰ)——广义朗之万方程.  , 1980, 29(8): 961-968. doi: 10.7498/aps.29.961
计量
  • 文章访问数:  6344
  • PDF下载量:  609
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-26
  • 修回日期:  2012-12-12
  • 刊出日期:  2013-04-05

/

返回文章
返回
Baidu
map