搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分数阶环境热浴的非各态历经判据研究

卢宏 吕艳 包景东

引用本文:
Citation:

基于分数阶环境热浴的非各态历经判据研究

卢宏, 吕艳, 包景东

Studies of nonergodic criterion based on the fractional heat bath model

Lu Hong, Lü Yan, Bao Jing-Dong
PDF
导出引用
  • 本文从分数阶谱形式的气固耦合模型出发, 理论推导出具有幂律记忆核的广义朗之万方程. 研究气体分子在自由场和简谐势场中的动力学演化和长时渐进行为, 着重分析三种各态历经判据: Khinchin判据、Lee判据以及内在判据和外在表现的适用性. 研究结果表明: Khinchin判据适用于广义朗之万方程描述的所有扩散和输运过程; Lee判据并不适用于布朗运动, 只能用来区分不同类型的扩散过程; 而内在判据和外在表现不仅能够把非各态历经分为两类, 同时可以揭示非各态历经的物理内在根源.
    The generalized Langevin equation with a power law memory kernel is derived via the gas/solid-surface model with fractional heat bath. Using Lapalce transformation, the dynamic evolution and long-time asymptotic behaviors of the gas particles occurring either in free or harmonic potentials are then investigated. In particular, the validity of three kinds of ergodic criteria is analyzed in detail, including the Khinchin criterion, Lee criterion, and the intrinsic and external behaviors. It is found that the Khinchin criterion holds for all ranges of diffusion and transport processes described by a generalized Langevin equation. Lee criterion is just applied to distinguish diffusion processes. Meanwhile, the intrinsic criterion and external behaviors can not only divide the nonergodicity into two classes but also reveal the underlying physical origins.
      通信作者: 卢宏, bj_luhong@163.com
    • 基金项目: 四川省教育厅青年基金(批准号: 13233683)、西华大学校级重点科研项目(批准号: Z1123330)和西华大学先进计算中心实验室基金资助的课题.
      Corresponding author: Lu Hong, bj_luhong@163.com
    • Funds: Project supported by the Natural Science Foundation of the Education Department of Sichuan Province, China (Grant No. 13233683), the Key Scientific Research Foundation of Xihua University (Grant No. Z1123330), and the Foundation of Key Laboratory of Advanced Scientific Computation, Xihua University, China.
    [1]

    Tamm M V, Nazarov L I, Gavrilov A A, Chertovich A V 2015 Phys. Rev. Lett. 114 178102

    [2]

    Guo G, Bittig A, Uhrmacher A 2015 J. Comput. Phys. 288 167

    [3]

    Hu W Y, Shao Y Z 2014 Acta Phys. Sin. 63 238202 (in Chinese) [胡文勇, 邵元智 2014 63 238202]

    [4]

    Lin F, Bao J D 2008 Acta Phys. Sin. 57 696 (in Chinese) [林方, 包景东 2008 57 696]

    [5]

    Montroll E, Weiss G 1965 J. Math. Phys. Lett. 6 167

    [6]

    Viñales A D, Despósito M A 2006 Phys. Rev. E 73 016111

    [7]

    Burov S, Barkai E 2008 Phys. Rev. Lett. 100 070601

    [8]

    Amblard F, Maggs A C, Yurke B, Pargellis A N, Leibler S 1996 Phys. Rev. Lett. 77 4470

    [9]

    Gu Q, Schiff E A, Grebner S, Wang F, Schwara R 1996 Phys. Rev. Lett. 76 3196

    [10]

    Sciortion F, Tartaglia P 1997 Physcia A 236 140

    [11]

    Stephenson J 1995 Physica A 222 234

    [12]

    Lu H, Qin L, Bao J D 2009 Acta Phys. Sin. 58 8127 (in Chinese) [卢宏, 覃莉, 包景东 2009 58 8127]

    [13]

    Lu H, Bao J D 2013 Chin. Phys. Lett. 30 010502

    [14]

    Brokmann X, Hermier J P, Messin G, Deebiolles P, Bouchard J P, Dahan M 2003 Phys. Rev. Lett. 90 120601

    [15]

    Saubamea B, Leduc M, Cohen-Tannoudji C 1999 Phys. Rev. Lett. 83 3796

    [16]

    Lutz E 2004 Phys. Rev. Lett. 93 190602

    [17]

    Papoulis A 1965 Probability, Random Variables and Stochastic Processes (New York: McGraw-Hill)

    [18]

    Lapas L C, Morgado R, Vainstein M H, Rubí J M, Oliveirs F A 2008 Phys. Rev. Lett. 101 230602

    [19]

    Lee M H 2007 Phys. Rev. Lett. 98 110403

    [20]

    Bai Z W, Bao J D, Song Y L 2005 Phys. Rev. E 72 061105

    [21]

    Bao J D, Hänggi P, Zhuo Y Z 2005 Phys. Rev. E 72 061107

    [22]

    Bao J D, Zhuo Y Z, Oliveira F A, Hänggi P 2006 Phys. Rev. E 74 061111

    [23]

    Kupferman R 2004 J. Stat. Phys. 114 291

    [24]

    Mainardia F, Goren R 2000 J. Comput. Appl. Math. 118 283

  • [1]

    Tamm M V, Nazarov L I, Gavrilov A A, Chertovich A V 2015 Phys. Rev. Lett. 114 178102

    [2]

    Guo G, Bittig A, Uhrmacher A 2015 J. Comput. Phys. 288 167

    [3]

    Hu W Y, Shao Y Z 2014 Acta Phys. Sin. 63 238202 (in Chinese) [胡文勇, 邵元智 2014 63 238202]

    [4]

    Lin F, Bao J D 2008 Acta Phys. Sin. 57 696 (in Chinese) [林方, 包景东 2008 57 696]

    [5]

    Montroll E, Weiss G 1965 J. Math. Phys. Lett. 6 167

    [6]

    Viñales A D, Despósito M A 2006 Phys. Rev. E 73 016111

    [7]

    Burov S, Barkai E 2008 Phys. Rev. Lett. 100 070601

    [8]

    Amblard F, Maggs A C, Yurke B, Pargellis A N, Leibler S 1996 Phys. Rev. Lett. 77 4470

    [9]

    Gu Q, Schiff E A, Grebner S, Wang F, Schwara R 1996 Phys. Rev. Lett. 76 3196

    [10]

    Sciortion F, Tartaglia P 1997 Physcia A 236 140

    [11]

    Stephenson J 1995 Physica A 222 234

    [12]

    Lu H, Qin L, Bao J D 2009 Acta Phys. Sin. 58 8127 (in Chinese) [卢宏, 覃莉, 包景东 2009 58 8127]

    [13]

    Lu H, Bao J D 2013 Chin. Phys. Lett. 30 010502

    [14]

    Brokmann X, Hermier J P, Messin G, Deebiolles P, Bouchard J P, Dahan M 2003 Phys. Rev. Lett. 90 120601

    [15]

    Saubamea B, Leduc M, Cohen-Tannoudji C 1999 Phys. Rev. Lett. 83 3796

    [16]

    Lutz E 2004 Phys. Rev. Lett. 93 190602

    [17]

    Papoulis A 1965 Probability, Random Variables and Stochastic Processes (New York: McGraw-Hill)

    [18]

    Lapas L C, Morgado R, Vainstein M H, Rubí J M, Oliveirs F A 2008 Phys. Rev. Lett. 101 230602

    [19]

    Lee M H 2007 Phys. Rev. Lett. 98 110403

    [20]

    Bai Z W, Bao J D, Song Y L 2005 Phys. Rev. E 72 061105

    [21]

    Bao J D, Hänggi P, Zhuo Y Z 2005 Phys. Rev. E 72 061107

    [22]

    Bao J D, Zhuo Y Z, Oliveira F A, Hänggi P 2006 Phys. Rev. E 74 061111

    [23]

    Kupferman R 2004 J. Stat. Phys. 114 291

    [24]

    Mainardia F, Goren R 2000 J. Comput. Appl. Math. 118 283

  • [1] 李德彰, 卢智伟, 赵宇军, 杨小宝. 自旋半经典朗之万方程一般形式的探讨.  , 2023, 72(14): 140501. doi: 10.7498/aps.72.20230106
    [2] 彭皓, 任芮彬, 钟扬帆, 蔚涛. 三态噪声激励下分数阶耦合系统的随机共振现象.  , 2022, 71(3): 030502. doi: 10.7498/aps.71.20211272
    [3] 彭皓, 任芮彬, 蔚涛. 三态噪声激励下分数阶耦合系统的随机共振现象研究.  , 2021, (): . doi: 10.7498/aps.70.20211272
    [4] 杨建华, 马强, 吴呈锦, 刘后广. 分数阶双稳系统中的非周期振动共振.  , 2018, 67(5): 054501. doi: 10.7498/aps.67.20172046
    [5] 刘晓君, 洪灵, 江俊. 非自治分数阶Duffing系统的激变现象.  , 2016, 65(18): 180502. doi: 10.7498/aps.65.180502
    [6] 邓琪敏, 邹亚中, 包景东. 耦合系统的朗之万动力学产生法.  , 2014, 63(17): 170502. doi: 10.7498/aps.63.170502
    [7] 范文萍, 蒋晓芸. 带有分数阶热流条件的时间分数阶热波方程及其参数估计问题.  , 2014, 63(14): 140202. doi: 10.7498/aps.63.140202
    [8] 柳燕, 包景东. 非各态历经噪声的产生及其应用.  , 2014, 63(24): 240503. doi: 10.7498/aps.63.240503
    [9] 于兴江, 刘希强. 时间分数阶Boussinesq方程的李对称分析.  , 2013, 62(23): 230201. doi: 10.7498/aps.62.230201
    [10] 谢文贤, 许鹏飞, 蔡力, 李东平. 随机双指数记忆耗散系统的非马尔可夫扩散.  , 2013, 62(8): 080503. doi: 10.7498/aps.62.080503
    [11] 钟苏川, 高仕龙, 韦鹍, 马洪. 线性过阻尼分数阶Langevin方程的共振行为.  , 2012, 61(17): 170501. doi: 10.7498/aps.61.170501
    [12] 高仕龙, 钟苏川, 韦鹍, 马洪. 过阻尼分数阶Langevin方程及其随机共振.  , 2012, 61(10): 100502. doi: 10.7498/aps.61.100502
    [13] 蒋泽南, 房超, 孙立风. 朗之万方程及其在蛋白质折叠动力学中的应用.  , 2011, 60(6): 060502. doi: 10.7498/aps.60.060502
    [14] 许喆, 刘崇新, 杨韬. 基于Lyapunov方程的分数阶新混沌系统的控制.  , 2010, 59(3): 1524-1531. doi: 10.7498/aps.59.1524
    [15] 卢宏, 覃莉, 包景东. 周期场中非各态历经布朗运动.  , 2009, 58(12): 8127-8133. doi: 10.7498/aps.58.8127
    [16] 胡建兵, 韩 焱, 赵灵冬. 基于Lyapunov方程的分数阶混沌系统同步.  , 2008, 57(12): 7522-7526. doi: 10.7498/aps.57.7522
    [17] 常福宣, 陈 进, 黄 薇. 反常扩散与分数阶对流-扩散方程.  , 2005, 54(3): 1113-1117. doi: 10.7498/aps.54.1113
    [18] 胡响明. 双光子双模激光的朗之万理论.  , 1995, 44(12): 1921-1928. doi: 10.7498/aps.44.1921
    [19] 胡响明, 汪德新. 光抽运双光子激光朗之万量子理论.  , 1992, 41(3): 437-441. doi: 10.7498/aps.41.437
    [20] 周光召, 苏肇冰, 郝柏林, 于渌. 非平衡统计场论与临界动力学(Ⅰ)——广义朗之万方程.  , 1980, 29(8): 961-968. doi: 10.7498/aps.29.961
计量
  • 文章访问数:  5619
  • PDF下载量:  175
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-06
  • 修回日期:  2015-05-02
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map