搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于传播圆补偿像散的被动锁模激光器谐振腔设计方法

张小军 杨富 王勇刚 孙利群 文侨 牛憨笨

引用本文:
Citation:

基于传播圆补偿像散的被动锁模激光器谐振腔设计方法

张小军, 杨富, 王勇刚, 孙利群, 文侨, 牛憨笨

Method of designing astigmatic compensation cavity for mode-locked laser based on propagation circle

Zhang Xiao-Jun, Yang Fu, Wang Yong-Gang, Sun Li-Qun, Wen Qiao, Niu Han-Ben
PDF
导出引用
  • 由于超短脉冲激光器的谐振腔大都采用多镜折叠的形式, 像散已成为影响锁模激光器性能优劣的重要问题. 本文提出了一种基于传播圆补偿像散的被动锁模激光器谐振腔设计方法, 该方法简单、直观、高效, 容易找到补偿像散的最佳位置. 理论研究表明, 当SESAM位于子午和弧矢传播圆交汇处附近时, SESAM处的子午光斑和弧矢光斑大小几乎相等, 像散得到补偿. 该谐振腔对外界干扰引起的腔镜振动和热透镜焦距的变化均不敏感, 谐振腔的抗干扰性很强. 实验研究表明, 当SESAM位于子午和弧矢传播圆交汇处附近时,锁模激光器可获得稳定连续的锁模激光脉冲, 且激光器的抗干扰性很强. 本文的理论研究与实验结果相一致.
    The cavities of ultrashort pulsed lasers are mostly based on folded resonators with multi-mirrors. Astigmatism is an important issue to affect the performance of the mode-locked laser. An effective method of astigmatic ally compensating a continuous-wave passively mode-locked laser is presented in this paper. This method, in which the resonator propagation circle graphic theory is used, is easy and intuitive to seek the optimal location of the semiconductor saturable absorber mirror (SESAM), where the astigmatism can be compensated. Theoretical results show that the tangential and the sagittal spot size at the SESAM are equal and that the astigmatism can be compensated, when an SESAM is located at the tangential and the sagittal propagation circle intersection. The mode-locked resonator is insensitive to external perturbation including the vibration and the change of the thermal lens focal length, which leads to the instability of the mode locking operation. The antijamming ability of the resonator is outstanding. The experimental results indicate that the mode-locked laser works in a stabilized continuous-wave mode locking state and operates extremely steadily, when the SESAM is located at the tangential and the sagittal propagation circle intersection. The experimental results of the mode locking lasers show good agreement with the theoretical studies.
    • 基金项目: 国家自然科学基金 (批准号: 61108026, 61001184, 61101175)、 高等学校博士学科点专项科研基金(批准号: 20114408120001)、 广东高校优秀青年创新人才培养计划项目 (批准号: LYM11107)、 深圳市科技研发资金重点实验室提升发展项目(批准号: CXB201005240011A) 和深圳大学科研基金资助面上项目(批准号: 201033)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61108026, 61001184, 61101175), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20114408120001), the Foundation for Distinguished Young Talents in Higher Education of Guangdong, China, (Grant No. LYM11107), the Promotion and Development Program of Key Laboratories Supported by the Science & Technology Research Fund of Shenzhen Government (Grant No. CXB201005240011A), and the Science Foundation of Shenzhen University (Grant No. 201033).
    [1]

    Keller U, Miller D A B, Boyd G D, Chiu T H, Ferguson J F, Asom M T 1992 Opt. Lett. 17 505

    [2]

    Torben S, Thomas M, Kjartan F, Soren L F, Christian P 2005 J. Opt. A: Pure Appl. Opt. 7 645

    [3]

    Huang K G, Lee W K, Wong S P, Zhou J Y, Yu Z X 1996 J. Opt. Soc. Am. B: Opt. Phys. 13 2863

    [4]

    Wen Q, Sun L Q, Wang Y G, Zhang E Y, Tian Q 2009 Opt. Express 11 8956

    [5]

    Zhang G Y, Guo S G 2003 Graphic Analysis and Design Method of Optical Resonator (Beijing: National Defence Industry Press) pp1-10 (in Chinese) [张光寅, 郭曙光 2003 光学谐振腔的图解分析与设计方法(北京:国防工业出版社) 第1–10页]

    [6]

    Geng A C, Zhao C, Bo Y, Lu Y F, Xu Z Y 2008 Acta Phys. Sin. 57 6987 (in Chinese) [耿爱丛, 赵慈, 薄勇, 鲁远甫, 许祖彦 2008 57 6987]

    [7]

    Song F, Zhang C B, Ding X,Xu J J, Zhang G Y, Leigh M, Peyghambarian N 2002 Appl. Phys. Lett. 81 2145

    [8]

    L B D 2003 Laser Optics-Beam Characterization, Propagation and Transformation, Resonator Technology and Physics (3th Ed.) (Beijin:Higher Education Press) p390 (in Chinese) [吕百达 2003 激光光学–光束描述、传输变换与光腔技术物理(第三版)(北京:高等教育出版社) 第390页]

    [9]

    Koechner W 2006 Solid-State Laser Engineering (Sixth Edition) (New York: Springer Science+Business Media)

    [10]

    Magni V 1986 Appl. Optics 25 107

    [11]

    Lancaster D G, Dawes J M 1998 Opt. Laser Technol. 30 103

  • [1]

    Keller U, Miller D A B, Boyd G D, Chiu T H, Ferguson J F, Asom M T 1992 Opt. Lett. 17 505

    [2]

    Torben S, Thomas M, Kjartan F, Soren L F, Christian P 2005 J. Opt. A: Pure Appl. Opt. 7 645

    [3]

    Huang K G, Lee W K, Wong S P, Zhou J Y, Yu Z X 1996 J. Opt. Soc. Am. B: Opt. Phys. 13 2863

    [4]

    Wen Q, Sun L Q, Wang Y G, Zhang E Y, Tian Q 2009 Opt. Express 11 8956

    [5]

    Zhang G Y, Guo S G 2003 Graphic Analysis and Design Method of Optical Resonator (Beijing: National Defence Industry Press) pp1-10 (in Chinese) [张光寅, 郭曙光 2003 光学谐振腔的图解分析与设计方法(北京:国防工业出版社) 第1–10页]

    [6]

    Geng A C, Zhao C, Bo Y, Lu Y F, Xu Z Y 2008 Acta Phys. Sin. 57 6987 (in Chinese) [耿爱丛, 赵慈, 薄勇, 鲁远甫, 许祖彦 2008 57 6987]

    [7]

    Song F, Zhang C B, Ding X,Xu J J, Zhang G Y, Leigh M, Peyghambarian N 2002 Appl. Phys. Lett. 81 2145

    [8]

    L B D 2003 Laser Optics-Beam Characterization, Propagation and Transformation, Resonator Technology and Physics (3th Ed.) (Beijin:Higher Education Press) p390 (in Chinese) [吕百达 2003 激光光学–光束描述、传输变换与光腔技术物理(第三版)(北京:高等教育出版社) 第390页]

    [9]

    Koechner W 2006 Solid-State Laser Engineering (Sixth Edition) (New York: Springer Science+Business Media)

    [10]

    Magni V 1986 Appl. Optics 25 107

    [11]

    Lancaster D G, Dawes J M 1998 Opt. Laser Technol. 30 103

  • [1] 贺亮, 彭雪芳, 沈小雨, 朱仁江, 王涛, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏. 低重复频率被动锁模半导体碟片激光器.  , 2024, 73(12): 124205. doi: 10.7498/aps.73.20240441
    [2] 沈晓红, 曾盈莹, 毛琳, 朱仁江, 王涛, 罗海军, 佟存柱, 汪丽杰, 宋晏蓉, 张鹏. 双波长自锁模半导体薄片激光器.  , 2022, 71(20): 204202. doi: 10.7498/aps.71.20220483
    [3] 戴川生, 董志鹏, 林加强, 姚培军, 许立新, 顾春. 基于纯水可饱和吸收体的1.9 μm波段被动调Q和锁模掺铥光纤激光器.  , 2022, 71(17): 174202. doi: 10.7498/aps.71.20212125
    [4] 崔文文, 邢笑伟, 肖悦嘉, 刘文军. 高损伤阈值可饱和吸收体锁模脉冲光纤激光器的研究进展.  , 2022, 71(2): 024206. doi: 10.7498/aps.71.20212442
    [5] 俞强, 郭琨, 陈捷, 王涛, 汪进, 史鑫尧, 吴坚, 张凯, 周朴. MnPS3可饱和吸收体被动锁模掺铒光纤激光器双波长激光.  , 2020, 69(18): 184208. doi: 10.7498/aps.69.20200342
    [6] 王小发, 张俊红, 高子叶, 夏光琼, 吴正茂. 基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器.  , 2017, 66(11): 114209. doi: 10.7498/aps.66.114209
    [7] 令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚. 基于WS2可饱和吸收体的调Q锁模Tm,Ho:LLF激光器.  , 2017, 66(11): 114207. doi: 10.7498/aps.66.114207
    [8] 陈睿, 余永涛, 上官士鹏, 封国强, 韩建伟. 90 nm互补金属氧化物半导体静态随机存储器局部单粒子闩锁传播效应诱发多位翻转的机理.  , 2014, 63(12): 128501. doi: 10.7498/aps.63.128501
    [9] 冯德军, 黄文育, 姜守振, 季伟, 贾东方. 基于少数层石墨烯可饱和吸收的锁模光纤激光器.  , 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [10] 白扬博, 向望华, 祖鹏, 张贵忠. 基于体光栅的被动锁模可调谐线型腔掺镱光纤激光器.  , 2012, 61(21): 214208. doi: 10.7498/aps.61.214208
    [11] 曹士英, 朱月, 柴路, 王清月, 张志刚. 半导体可饱和吸收镜锁模的钒酸盐混晶Nd:Gd0.1Y0.9VO4激光器.  , 2009, 58(9): 6269-6272. doi: 10.7498/aps.58.6269
    [12] 令维军, 魏志义, 孙敬华, 王兆华, 田金荣, 贾玉磊, 王 鹏, 韩海年. 低阈值掺钛蓝宝石激光器实验研究.  , 2005, 54(9): 4182-4185. doi: 10.7498/aps.54.4182
    [13] 王 专, 王清月, 宋有建, 邢岐荣, 柴 路. 含负克尔效应半导体可饱和吸收镜的五镜腔飞秒钛宝石激光器的理论分析.  , 2005, 54(11): 5164-5167. doi: 10.7498/aps.54.5164
    [14] 章若冰, 马晶, 庞冬青, 孙敬华, 王清月. 激光晶体角色散对克尔透镜锁模激光器二阶、三阶色散的影响.  , 2002, 51(2): 262-269. doi: 10.7498/aps.51.262
    [15] 孙敬华, 章若冰, 胡有方, 张志刚, 王清月. 自启动KLM钛宝石激光器谐振腔的理论计算.  , 2002, 51(6): 1272-1278. doi: 10.7498/aps.51.1272
    [16] 章若冰, 孙敬华, 庞冬青, 柴路, 王清月. 用于固体自锁模的三元腔激光器的二阶、三阶色散的解析表示.  , 2001, 50(5): 897-903. doi: 10.7498/aps.50.897
    [17] 柴 路, 王清月, 张志刚, 赵江山, 王 勇, 张伟力, 邢歧荣. 用腔内半导体可饱和吸收镜钛宝石激光器中自锁模状态的实验研究.  , 2001, 50(1): 68-72. doi: 10.7498/aps.50.68
    [18] 柴路, 王清月, 赵江山, 邢歧荣, 张志刚. 半导体可饱和吸收镜启动克尔透镜锁模机理的实验研究.  , 2001, 50(7): 1298-1301. doi: 10.7498/aps.50.1298
    [19] 黄志坚, 孙军强, 黄德修. 快速与慢速饱和吸收体被动锁模掺铒光纤激光器的理论分析.  , 1998, 47(1): 9-18. doi: 10.7498/aps.47.9
    [20] 甘子钊, 杨国桢. 半导体中光的相干传播理论(Ⅰ).  , 1981, 30(7): 878-886. doi: 10.7498/aps.30.878
计量
  • 文章访问数:  6692
  • PDF下载量:  833
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-13
  • 修回日期:  2012-08-24
  • 刊出日期:  2013-01-05

/

返回文章
返回
Baidu
map