-
采用脉冲直流磁控溅射法, 以WO3:ZnO陶瓷靶为溅射靶材, 通过在溅射气氛中引入H2的方式, 在室温条件下制备了低电阻率、高可见和近红外光区透过率的H, W共掺杂ZnO (HWZO) 薄膜. 系统地研究了H2流量对所制备的HWZO薄膜的结构、组分、元素价态、光电特性的影响. 结果表明: 掺入的H可促进Zn的氧化, 改善薄膜的结晶质量, 提高薄膜透过率. H引入之后薄膜的载流子浓度增加, 电阻率降低. 在H2流量为6 mL/min时制备的HWZO薄膜性能最优, 电阻率为7.71×10-4 Ω·m, 光学带隙为3.58 eV, 400–1100 nm的平均透过率为82.4%.Highly conductive and transparent hydrogen and tungsten co-doped zinc oxide (HWZO) thin films are prepared at room temperature by pulsed DC magnetron sputtering using a WZO (98.5 wt.% ZnO, 1.5 wt.% WO3) ceramic target with different H2 flow rates. The influence of H2 flow rate on the structural, compositional, elemental valence state as well as electrical and optical properties are systematically investigated. The results indicate that the incorporation of H does not change the structure of tungsten doped zinc oxide (WZO) namely, both WZO and HWZO films are polycrystalline with hexagonal structure and a preferred orientation along c-axis, respectively whereas the crystallinity is firstly improved and then deteriorated with the increase of H2 flow rate. Furthermore, the reaction between Zn and O can be promoted by the incorporated H. With an optimal H2 flow rate, the carrier concentration increases from 3.32×1020 cm-3 for WZO film to 5.44×1020 cm-3 for HWZO film, and the resistivity decreases from 1.20×10-3 Ω·cm to 7.71×10-4 Ω·cm. The average transmittance in a range of 400-1100 nm is improved from 69.2% to 82.4 %, and the optical band gap is widened from 3.42 eV to 3.58 eV.
-
Keywords:
- HWZO film /
- magnetron sputtering /
- solar cell
[1] Meier J, Vallat-Sauvain E, Dubail S, Kroll U, Dubail J, Golay S, Feitknecht L, Torres P, Faÿ S, Fischer D, Shah A 2001 Sol. Energy Mater. Sol. Cells 66 73
[2] Yan B J, Yue G Z, Sivec L, Yang J, Guha S, Jiang C S 2011 Appl. Phys. Lett. 99 113512
[3] Zhang X D, Zheng X X, Wang G H, Xu S Z, Yue Q, Lin Q, Wei C C, Sun J, Zhang D K, Xiong S Z, Geng X H, Zhao Y 2010 Acta Phys. Sin. 59 8231 (in Chinese) [张晓丹, 郑新霞, 王光红, 许盛之, 岳强, 林泉, 魏长春, 孙建, 张德坤, 熊绍珍, 耿新华, 赵颖2010 59 8231]
[4] Zheng X X, Zhang X D, Yang S S, Wang G H, Xu S Z, Wei C C, Sun J, Geng X H, Xiong S Z, Zhao Y 2011 Acta Phys. Sin. 60 068801 (in Chinese) [郑新霞, 张晓丹, 杨素素, 王光红, 许盛之, 魏长春, 孙建, 耿新华, 熊绍珍, 赵颖2011 60 068801]
[5] Wang Y F, Zhang X D, Bai L S, Huang Q, Wei C C, Zhao Y 2012 Appl. Phys. Lett. 100 263508
[6] Selvan J A A, Delahoy A E, Guo S Y, Li Y M 2006 Sol. Energy Mater. Sol. Cells 90 3371
[7] Agashe C, Kluth O, Schöpe G, Siekmann H, Hrgen J, Rech B 2003 Thin Solid Films 442 167
[8] Meng Y, Yang X L, Chen H X, Shen J, Jiang Y M, Zhang Z J, Hua Z Y 2001 Thin Solid Films 394 219
[9] Wang Y F, Huang Q, Song Q G, Liu Y, Wei C C, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 137801 (in Chinese) [王延峰, 黄茜, 宋庆功, 刘阳, 魏长春, 赵颖, 张晓丹2012 61 137801]
[10] Li X F, Zhang Q, Miao W N, Huang L, Zhang Z J, Hua Z Y 2006 J. Vac. Sci. Technol. A 24 1866
[11] Wang Y F, Huang Q, Wei C C, Zhang D K, Zhao Y, Zhang X D 2012 Appl. Surf. Sci. 258 8797
[12] Oh B Y, Jeong M C, Lee W, Myoung J M 2004 J. Crystal Growth 274 453
[13] Lee J, Lee D, Lim D, Yang K 2007 Thin Solid Films 515 6094
[14] Oliveira C, Rebouta L, Lacerda-Arôso T D, Lanceros-Mendez S, Viseu T, Tavares C J, Tovar J, Ferdov S, Alves E 2009 Thin Solid Films 517 6290
[15] Wang Y P, Lu J G, Bie X, Gong L, Li X, Song D, Zhao X Y, Ye W Y, Ye Z Z 2011 J. Vac. Sci. Technol. A 29 031505
[16] van de Walle C G, Neugebauer J 2003 Nature 423 626
[17] van de Walle C G 2000 Phys. Rev. Lett. 85 1012
[18] Lee S H, Lee T S, Lee K S, Cheong B, Kim Y D, Kim W M 2008 J. Phys. D: Appl. Phys. 41 095303
[19] Chen L Y, Chen W H, Wang J J, Hong F C N, Su Y K 2004 Appl. Phys. Lett. 85 5628
[20] Liu W F, Du G T, Sun Y F, Bian J M, Cheng Y, Yang T P, Chang Y C, Xu Y B 2007 Appl. Surf. Sci. 253 2999
[21] Ellmer K 2001 J. Phys. D: Appl. Phys. 34 3097
[22] Strohmeier B R, Hercules D M 1984 J. Catal. 86 266
[23] Chen M, Wang X, Yu Y H, Pei Z L, Bai X D, Sun C, Huang R F, Wen L S 2000 Appl. Surf. Sci. 158 134
[24] Nefedov V I, Gati D, Dzhurinskii B F, Sergushin N P, Salyn Y V 1975 Zh. Neorg. Khimii 20 2307
[25] Ng K T, Hercules D M 1976 J. Phys. Chem. 80 2095
[26] Sarkar A, Ghosh S, Chaudhuri S, Pal A K 1991 Thin Solid Films 204 255
[27] Swanepoel R 1983 J. Phys. E: Sci. Instrum. 16 1214
-
[1] Meier J, Vallat-Sauvain E, Dubail S, Kroll U, Dubail J, Golay S, Feitknecht L, Torres P, Faÿ S, Fischer D, Shah A 2001 Sol. Energy Mater. Sol. Cells 66 73
[2] Yan B J, Yue G Z, Sivec L, Yang J, Guha S, Jiang C S 2011 Appl. Phys. Lett. 99 113512
[3] Zhang X D, Zheng X X, Wang G H, Xu S Z, Yue Q, Lin Q, Wei C C, Sun J, Zhang D K, Xiong S Z, Geng X H, Zhao Y 2010 Acta Phys. Sin. 59 8231 (in Chinese) [张晓丹, 郑新霞, 王光红, 许盛之, 岳强, 林泉, 魏长春, 孙建, 张德坤, 熊绍珍, 耿新华, 赵颖2010 59 8231]
[4] Zheng X X, Zhang X D, Yang S S, Wang G H, Xu S Z, Wei C C, Sun J, Geng X H, Xiong S Z, Zhao Y 2011 Acta Phys. Sin. 60 068801 (in Chinese) [郑新霞, 张晓丹, 杨素素, 王光红, 许盛之, 魏长春, 孙建, 耿新华, 熊绍珍, 赵颖2011 60 068801]
[5] Wang Y F, Zhang X D, Bai L S, Huang Q, Wei C C, Zhao Y 2012 Appl. Phys. Lett. 100 263508
[6] Selvan J A A, Delahoy A E, Guo S Y, Li Y M 2006 Sol. Energy Mater. Sol. Cells 90 3371
[7] Agashe C, Kluth O, Schöpe G, Siekmann H, Hrgen J, Rech B 2003 Thin Solid Films 442 167
[8] Meng Y, Yang X L, Chen H X, Shen J, Jiang Y M, Zhang Z J, Hua Z Y 2001 Thin Solid Films 394 219
[9] Wang Y F, Huang Q, Song Q G, Liu Y, Wei C C, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 137801 (in Chinese) [王延峰, 黄茜, 宋庆功, 刘阳, 魏长春, 赵颖, 张晓丹2012 61 137801]
[10] Li X F, Zhang Q, Miao W N, Huang L, Zhang Z J, Hua Z Y 2006 J. Vac. Sci. Technol. A 24 1866
[11] Wang Y F, Huang Q, Wei C C, Zhang D K, Zhao Y, Zhang X D 2012 Appl. Surf. Sci. 258 8797
[12] Oh B Y, Jeong M C, Lee W, Myoung J M 2004 J. Crystal Growth 274 453
[13] Lee J, Lee D, Lim D, Yang K 2007 Thin Solid Films 515 6094
[14] Oliveira C, Rebouta L, Lacerda-Arôso T D, Lanceros-Mendez S, Viseu T, Tavares C J, Tovar J, Ferdov S, Alves E 2009 Thin Solid Films 517 6290
[15] Wang Y P, Lu J G, Bie X, Gong L, Li X, Song D, Zhao X Y, Ye W Y, Ye Z Z 2011 J. Vac. Sci. Technol. A 29 031505
[16] van de Walle C G, Neugebauer J 2003 Nature 423 626
[17] van de Walle C G 2000 Phys. Rev. Lett. 85 1012
[18] Lee S H, Lee T S, Lee K S, Cheong B, Kim Y D, Kim W M 2008 J. Phys. D: Appl. Phys. 41 095303
[19] Chen L Y, Chen W H, Wang J J, Hong F C N, Su Y K 2004 Appl. Phys. Lett. 85 5628
[20] Liu W F, Du G T, Sun Y F, Bian J M, Cheng Y, Yang T P, Chang Y C, Xu Y B 2007 Appl. Surf. Sci. 253 2999
[21] Ellmer K 2001 J. Phys. D: Appl. Phys. 34 3097
[22] Strohmeier B R, Hercules D M 1984 J. Catal. 86 266
[23] Chen M, Wang X, Yu Y H, Pei Z L, Bai X D, Sun C, Huang R F, Wen L S 2000 Appl. Surf. Sci. 158 134
[24] Nefedov V I, Gati D, Dzhurinskii B F, Sergushin N P, Salyn Y V 1975 Zh. Neorg. Khimii 20 2307
[25] Ng K T, Hercules D M 1976 J. Phys. Chem. 80 2095
[26] Sarkar A, Ghosh S, Chaudhuri S, Pal A K 1991 Thin Solid Films 204 255
[27] Swanepoel R 1983 J. Phys. E: Sci. Instrum. 16 1214
计量
- 文章访问数: 6509
- PDF下载量: 607
- 被引次数: 0