搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二氧化钒薄膜低温制备及其太赫兹调制特性研究

孙丹丹 陈智 文岐业 邱东鸿 赖伟恩 董凯 赵碧辉 张怀武

引用本文:
Citation:

二氧化钒薄膜低温制备及其太赫兹调制特性研究

孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武

VO2 low temperature deposition and terahertz transmission modulation

Sun Dan-Dan, Chen Zhi, Wen Qi-Ye, Qiu Dong-Hong, Lai Wei-En, Dong Kai, Zhao Bi-Hui, Zhang Huai-Wu
PDF
导出引用
  • 针对二氧化钒 (VO2) 薄膜在可调谐太赫兹功能器件中的应用, 利用低温磁控溅射技术, 在太赫兹和光学频段透明的BK7玻璃上制备出高质量的VO2 薄膜. 晶体结构和微观形貌分析显示薄膜为单相VO2单斜金红石结构, 具有明显的 (011) 晶面择优取向, 结构致密, 表面平整. 利用四探针技术和太赫兹时域光谱系统分析了薄膜的绝缘体-金属相变特性, 发现相变过程中薄膜电阻率变化达到4个数量级, 同时对太赫兹透射强度具有强烈的调制作用, 调制深度高达89%. 通过电学相变和太赫兹光学相变特性的对比研究, 证实薄膜的电阻率突变主要与逾渗通路的形成有关, 而太赫兹幅度的调制则来源于薄膜中载流子浓度的变化.该薄膜制备简单, 成膜质量高, 太赫兹调制性能优异, 可应用于太赫兹开关和调制器等集成式太赫兹功能器件.
    Recently, the applications of vanadium dioxide film (VO2) in terahertz functional devices have attracted much attention because VO2 has a remarkable response to THz wave, In this work BK7 glass a material highly transparent to both THz and optical band is adopted as a substrate. High-quality VO2 film is deposited on a BK7 substrate using low temperature magnetron sputtering technology. The crystallinity and microstructure of the thin film are investigated by X-ray diffraction and atomic force microscopy. The results indicate that the as-deposited film crystallizes directly into single-phase VO2 with (011) preferred orientation and compact nanostructure. Under a heating-cooling cycle, the film undergos a metal-insulator transition with an abrupt resistivity change reaching more than 4 orders of magnitude. Terahertz transmission modulation is characterized by terahertz time domain spectrum, and a giant modulation depth of 89% is obtained. Due to the high transparence and the huge modulation effect, the VO2/BK7 can be widely used for THz devices such as modulators and switches.
    • 基金项目: 国家自然科学基金重点项目(批准号: 61131005, 61021061)、 教育部科学技术研究重大项目(批准号: 313013)、 教育部新世纪优秀人才资助计划(批准号: NCET-11-0068)、四川省杰出青年学术技术带头人计划(批准号: 2011JQ0001)、四川省国际科技合作项目(批准号: 2010HH0026)和中央高校基本科研业务费(批准号: ZYGX2010J034)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61131005, 61021061), the Key Grant Project of Chinese Ministry of Education (Grant No. 313013), the "New Century Excellent Talent Foundation", China (Grant No. NCET-11-0068), Sichuan Youth S & T Foundation, China (Grant No. 2011JQ0001), Sichuan International S & T Cooperation Program, China (Grant No. 2010HH0026), and the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2010J034).
    [1]

    Agrawal A, Nahata A 2007 Opt. Express 15 9022

    [2]

    Kleine-Ostmann T, Pierz K, Hein G, Dawson P, Koch M 2007 IEEE Antennas Propag. 49 24

    [3]

    O'Hara J F, Taylor A J, Averitt R D, Zide J M, Gossard A C 2006 Appl. Phys. Lett. 88 251119

    [4]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [5]

    Zylbersztejn A, Mott N F 1975 Phys. Rev. B 11 4383

    [6]

    Chain E E 1991 Appl. Opt. 30 2782

    [7]

    Lopez R, Boatner L A, Haynes T E, Haglund Jr R F, Feldman L C 2004 Appl. Phys. Lett. 85 1410

    [8]

    Kim H T, Lee Y W, Kim B J, Chae B G, Yun S J, Kang K Y, Han K J, Yee K J, Lim Y S 2006 Phys. Rev. Lett. 97 266401

    [9]

    Cui J Z, Da D A, Jiang W S 1998 Acta Phys. Sin. 47 454 (in Chinese) [崔敬忠, 达道安, 姜万顺 1998 47 454]

    [10]

    Ben-Messaoud T, Landry G, Gariépy J P, Ramamoorthy B, Ashrit P V, Haché A 2008 Opt. Commun. 281 6024

    [11]

    Seo M, Kyoung J, Park H, Koo S, Kim H S, Bernien H, Kim B J, Choe J H, Ahn Y H, Kim H T, Park N, Park Q H, Ahn K, Kim D S 2010 Nano Lett. 10 2064

    [12]

    Kyoung J, Seo M, Park H, Koo S, Kim H S, Park Y, Kim B J, Ahn K, Park N, Kim H T, Kim D S 2010 Opt. Express 18 16452

    [13]

    Wen Q Y, Zhang H W, Yang Q H, Xie Y S, Chen K, Liu Y L 2010 Appl. Phys. Lett. 97 021111

    [14]

    Choi S B, Kyoung J S, Kim H S, Park H R, Park D J, Kim B J, Ahn Y H, Rotermund F, Kim H T, Ahn K J, Kim D S 2011 Appl. Phys. Lett. 98 071105

    [15]

    Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y, Zhang P X 2012 J. Phys. D: Appl. Phys. 45 235106

    [16]

    Driscoll T, Kim H T, Chae B G, Kim B J, Lee Y W, Jokerst N M, Palit S, Smith D R, Ventra M D, Basov D N 2009 Science 325 1518

    [17]

    Goldflam M D, Driscoll T, Chapler B, Khatib O, Marie Jokerst N, Palit S, Smith D R, Kim B J, Seo G, Kim H T, Ventra M D, Basov D N 2011 Appl. Phys. Lett. 99 044103

    [18]

    Luo Z F, Wu Z M, Xu X D, Wang T, Jiang Y D 2010 Chin. Phys. B 19 106103

    [19]

    Nakajima M, Takubo N, Hiroi Z, Ueda Y, Suemoto T 2008 Appl. Phys. Lett. 92 011907

    [20]

    Shi Q W, Huang W X, Zhang Y X, Yan J Z, Zhang Y B, Mao M, Zhang Y, Tu M J 2011 Acs. Appl. Mater. 3 3523

    [21]

    Zhao Y, Lee J H, Zhu Y H, Nazari M, Chen C H, Wang H Y, Bernussi A, Holtz M, Fan Z Y 2012 J. Appl. Phys. 111 053533

    [22]

    Wang C L, Tian Z, Xing Q R, Gu J Q, Liu F, Hu M L, Chai L, Wang Q Y 2010 Acta Phys. Sin. 59 7857 (in Chinese) [王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月 2010 59 7857]

    [23]

    Li J, Dho J 2011 Appl. Phys. Lett. 99 231909

    [24]

    Gupta A, Aggarwal R, Gupta P, Dutta T, Narayan R J, Narayan J 2009 Appl. Phys. Lett. 95 111915

    [25]

    Brassard D, Fourmaux S, Jean-Jacques M, Kieffer J C, El Khakani M A 2005 Appl. Phys. Lett. 87 051910

    [26]

    Jiang L J, Carr W N 2004 J. Micromech. Microeng. 14 833

    [27]

    Rozen J, Lopez R, Haglund R F, Feldman L C 2006 Appl. Phys. Lett. 88 081902

    [28]

    Qazilbash M M, Brehm M, Chae B G, Ho P C, Andreev G O, Kim B J, Yun S J, Balatsky A V, Maple M B, Keilmann F, Kim H T, Basov D N 2007 Science 318 1750

    [29]

    Jepsen P U, Fischer Bernd M, Thoman A, Helm H, Suh J Y, Lopez R, Haglund R F 2006 Phys. Rev. B 74 205103

  • [1]

    Agrawal A, Nahata A 2007 Opt. Express 15 9022

    [2]

    Kleine-Ostmann T, Pierz K, Hein G, Dawson P, Koch M 2007 IEEE Antennas Propag. 49 24

    [3]

    O'Hara J F, Taylor A J, Averitt R D, Zide J M, Gossard A C 2006 Appl. Phys. Lett. 88 251119

    [4]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [5]

    Zylbersztejn A, Mott N F 1975 Phys. Rev. B 11 4383

    [6]

    Chain E E 1991 Appl. Opt. 30 2782

    [7]

    Lopez R, Boatner L A, Haynes T E, Haglund Jr R F, Feldman L C 2004 Appl. Phys. Lett. 85 1410

    [8]

    Kim H T, Lee Y W, Kim B J, Chae B G, Yun S J, Kang K Y, Han K J, Yee K J, Lim Y S 2006 Phys. Rev. Lett. 97 266401

    [9]

    Cui J Z, Da D A, Jiang W S 1998 Acta Phys. Sin. 47 454 (in Chinese) [崔敬忠, 达道安, 姜万顺 1998 47 454]

    [10]

    Ben-Messaoud T, Landry G, Gariépy J P, Ramamoorthy B, Ashrit P V, Haché A 2008 Opt. Commun. 281 6024

    [11]

    Seo M, Kyoung J, Park H, Koo S, Kim H S, Bernien H, Kim B J, Choe J H, Ahn Y H, Kim H T, Park N, Park Q H, Ahn K, Kim D S 2010 Nano Lett. 10 2064

    [12]

    Kyoung J, Seo M, Park H, Koo S, Kim H S, Park Y, Kim B J, Ahn K, Park N, Kim H T, Kim D S 2010 Opt. Express 18 16452

    [13]

    Wen Q Y, Zhang H W, Yang Q H, Xie Y S, Chen K, Liu Y L 2010 Appl. Phys. Lett. 97 021111

    [14]

    Choi S B, Kyoung J S, Kim H S, Park H R, Park D J, Kim B J, Ahn Y H, Rotermund F, Kim H T, Ahn K J, Kim D S 2011 Appl. Phys. Lett. 98 071105

    [15]

    Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y, Zhang P X 2012 J. Phys. D: Appl. Phys. 45 235106

    [16]

    Driscoll T, Kim H T, Chae B G, Kim B J, Lee Y W, Jokerst N M, Palit S, Smith D R, Ventra M D, Basov D N 2009 Science 325 1518

    [17]

    Goldflam M D, Driscoll T, Chapler B, Khatib O, Marie Jokerst N, Palit S, Smith D R, Kim B J, Seo G, Kim H T, Ventra M D, Basov D N 2011 Appl. Phys. Lett. 99 044103

    [18]

    Luo Z F, Wu Z M, Xu X D, Wang T, Jiang Y D 2010 Chin. Phys. B 19 106103

    [19]

    Nakajima M, Takubo N, Hiroi Z, Ueda Y, Suemoto T 2008 Appl. Phys. Lett. 92 011907

    [20]

    Shi Q W, Huang W X, Zhang Y X, Yan J Z, Zhang Y B, Mao M, Zhang Y, Tu M J 2011 Acs. Appl. Mater. 3 3523

    [21]

    Zhao Y, Lee J H, Zhu Y H, Nazari M, Chen C H, Wang H Y, Bernussi A, Holtz M, Fan Z Y 2012 J. Appl. Phys. 111 053533

    [22]

    Wang C L, Tian Z, Xing Q R, Gu J Q, Liu F, Hu M L, Chai L, Wang Q Y 2010 Acta Phys. Sin. 59 7857 (in Chinese) [王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月 2010 59 7857]

    [23]

    Li J, Dho J 2011 Appl. Phys. Lett. 99 231909

    [24]

    Gupta A, Aggarwal R, Gupta P, Dutta T, Narayan R J, Narayan J 2009 Appl. Phys. Lett. 95 111915

    [25]

    Brassard D, Fourmaux S, Jean-Jacques M, Kieffer J C, El Khakani M A 2005 Appl. Phys. Lett. 87 051910

    [26]

    Jiang L J, Carr W N 2004 J. Micromech. Microeng. 14 833

    [27]

    Rozen J, Lopez R, Haglund R F, Feldman L C 2006 Appl. Phys. Lett. 88 081902

    [28]

    Qazilbash M M, Brehm M, Chae B G, Ho P C, Andreev G O, Kim B J, Yun S J, Balatsky A V, Maple M B, Keilmann F, Kim H T, Basov D N 2007 Science 318 1750

    [29]

    Jepsen P U, Fischer Bernd M, Thoman A, Helm H, Suh J Y, Lopez R, Haglund R F 2006 Phys. Rev. B 74 205103

  • [1] 郑转平, 刘榆杭, 赵帅宇, 蒋杰伟, 卢乐. 姜黄素与邻苯二酚共晶的太赫兹光谱.  , 2023, 72(17): 173201. doi: 10.7498/aps.72.20230739
    [2] 彭晓昱, 周欢. 太赫兹波生物效应.  , 2022, (): . doi: 10.7498/aps.71.20211996
    [3] 彭晓昱, 周欢. 太赫兹波生物效应.  , 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [4] 李郝, 杨鑫, 张正平. THz波在不同角度磁化的非均匀磁化等离子体中的传输特性分析.  , 2021, 70(7): 075202. doi: 10.7498/aps.70.20201450
    [5] 陈旭生, 李九生. 缺陷组合嵌入VO2薄膜结构的可调太赫兹吸收器.  , 2020, 69(2): 027801. doi: 10.7498/aps.69.20191511
    [6] 杨培棣, 欧阳琛, 洪天舒, 张伟豪, 苗俊刚, 吴晓君. 利用连续激光抽运-太赫兹探测技术研究单晶和多晶二氧化钒纳米薄膜的相变.  , 2020, 69(20): 204205. doi: 10.7498/aps.69.20201188
    [7] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究.  , 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [8] 张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨. 铁磁异质结构中的超快自旋流调制实现相干太赫兹辐射.  , 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [9] 陈伟, 郭立新, 李江挺, 淡荔. 时空非均匀等离子体鞘套中太赫兹波的传播特性.  , 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [10] 王凯, 张文华, 刘凌云, 徐法强. VO2薄膜表面氧缺陷的修复:F4TCNQ分子吸附反应.  , 2016, 65(8): 088101. doi: 10.7498/aps.65.088101
    [11] 田伟, 文岐业, 陈智, 杨青慧, 荆玉兰, 张怀武. 硅基全光宽带太赫兹幅度调制器的研究.  , 2015, 64(2): 028401. doi: 10.7498/aps.64.028401
    [12] 张会云, 刘蒙, 尹贻恒, 吴志心, 申端龙, 张玉萍. 基于格林函数法研究金属线栅在太赫兹波段的散射特性.  , 2013, 62(19): 194207. doi: 10.7498/aps.62.194207
    [13] 邱东鸿, 文岐业, 杨青慧, 陈智, 荆玉兰, 张怀武. 金属Pt薄膜上二氧化钒的制备及其电致相变性能研究.  , 2013, 62(21): 217201. doi: 10.7498/aps.62.217201
    [14] 郑灵, 赵青, 刘述章, 邢晓俊. 太赫兹波在非磁化等离子体中的传输特性研究.  , 2012, 61(24): 245202. doi: 10.7498/aps.61.245202
    [15] 谭晓玲, 耿优福, 周骏, 姚建铨. THz波在金属镀层空芯波导中传输的理论和实验研究.  , 2011, 60(5): 054101. doi: 10.7498/aps.60.054101
    [16] 张戎, 曹俊诚. 光子晶体对太赫兹波的调制特性研究.  , 2010, 59(6): 3924-3929. doi: 10.7498/aps.59.3924
    [17] 郭东明, 杨玲珍, 王安帮, 张秀娟, 王云才. 反馈强度调制增强混沌光通信的保密性.  , 2009, 58(12): 8275-8280. doi: 10.7498/aps.58.8275
    [18] 张玉萍, 张会云, 耿优福, 谭晓玲, 姚建铨. 太赫兹波在有限电导率金属空芯波导中的传输特性.  , 2009, 58(10): 7030-7033. doi: 10.7498/aps.58.7030
    [19] 李金华, 袁宁一, 谢太斌, 但迪迪. 超高温度系数V0.97W0.03 O2多晶薄膜的制备研究.  , 2007, 56(3): 1790-1795. doi: 10.7498/aps.56.1790
    [20] 严资杰, 袁 孝, 徐业彬, 高国棉, 陈长乐. 室温下Pr0.7Ca0.3MnO3薄膜的瞬态光响应特性.  , 2007, 56(10): 6080-6083. doi: 10.7498/aps.56.6080
计量
  • 文章访问数:  9064
  • PDF下载量:  1283
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-20
  • 修回日期:  2012-07-24
  • 刊出日期:  2013-01-05

/

返回文章
返回
Baidu
map