-
绝缘材料毛细孔的离子导向效应研究在被动型离子光学元件开发方面有着重要的意义. 进行了150 keV O3+, 0.32 MeV O+, 2 MeV O2+等具有不同Ep/q值的离子与氧化铝毛细孔的相互作用研究.对于150 keV O3+入射离子, 离子沿毛细孔穿越的过程中存在着导向效应:随着毛细孔相对于入射离子束的偏转, 入射离子依然能够显著地穿过毛细孔, 而且保持电荷态不变; 出射离子的角分布谱发生与毛细孔偏转相同的偏移; 毛细孔不同偏转角度时的穿透率可以很好地被高斯函数拟合. 对于0.32 MeV O+, 2 MeV O2+离子入射氧化铝毛细孔, 没有导向效应发生.导向效应能够发生的入射离子的 Ep/q最大值小于320 kV.Study of ion guiding effect of capillaries in insulator is of significance for developing passive-type ionic optics. Interactions between ions with different values of Ep/q, such as 150 keV O3+, 0.32 MeV O+ and 2 MeV O2+, and alumina capillaries are investigated. For projectile ions of 150 keV O3+, a guiding effect exists during the passage of the projectile ions through the capillaries. As the capillaries are tilted with respect to the projectile ion beam, the projectile ions can still pass through the capillaries considerably and the charge state remains unchanged; the spectrum of angular distribution of the ions out of the capillaries shifts by an angle the same as the tilt angle of the capillaries; the penetrating rates of the projectile ions for different tilt angles of the capillaries can be fitted to Gaussion function. For 0.32 MeV O+ and 2 MeV O2+ ions impinging on alumina capillaries, no guiding effect occurs in the interaction process. The maximum value of Ep/q of the projectile ions for guiding effect to occur is less than 320 kV.
-
Keywords:
- value of Ep/q /
- ions /
- alumina capillaries /
- interaction
[1] Briand J P, de Billy L, Charles P, Essabaa S, Briand P, Geller R, Desclaux J P, Bliman S , Ristori C 1990 Phys. Rev. Lett. 65 159
[2] Kurz R, Töglhofer K, Winter H P, Aumayr F, Mann R 1992 Phys. Rev. Lett. 69 1140
[3] Schenkel T, Barnes A V, Hamza A V, Schneider D H, Banks J C, Doyle B L 1998 Phys. Rev. Lett. 80 4325
[4] Ninomiya S, Yamazaki Y, Koike F, Masuda H, Azuma T, Komaki K, Kuroki K, Sekiguchi M 1997 Phys. Rev. Lett. 78 4557
[5] Morishita Y, Hutton R, Torii H A, Komaki K, Brage T, Ando K, Ishii K, Kanai Y, Masuda H, Sekiguchi M, Rosmej F B, Yamazaki Y 2004 Phys. Rev. A 70 012902
[6] Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201
[7] Stolterfoht N, Hellhammer R, Pesic Z D, Hoffmann V, Bumdeslamm J, Petrov A, Fink D, Sulik B, Pedregosa J, McCullough R W 2004 Nucl. Instr. Meth. B 225 169
[8] Stolterfoht N, Hellhammer R, Sobocinski P, Pesic Z D, Bumdeslamm J, Sulik B, Shah M B, Dunn K, Pedregosa J, McCullough R W 2005 Nucl. Instr. Meth. B 235 460
[9] Vikor G Y, Rajendra R T, Pesic Z D, Stolterfoht N, Schuch R 2005 Nucl. Instr. Meth. B 233 218
[10] Vokhmyanina K A, Zhilyakov L A, Kostanovsky A V, Kulikauskas V S, Petukhov V P, Pokhil G P 2006 J. Phys. A: Math. Gen. 39 4775
[11] Schiessl K, Palfinger W, Tokesi K, Nowotny H, Lemell C, Burgdorfer J 2007 Nucl. Instr. Meth. B 258 150
[12] Stolterfoht N, Hellhammer R, Bundesmann J, Fink D 2008 Phys. Rev. A 77 032905
[13] Stolterfoht N, Hellhammer R, Juhász Z, Sulik B, Bayer V, Trautmann C, Bodewits E, de Nijs A J, Dang H M, Hoekstra R 2009 Phys. Rev. A 79 042902
[14] Bereczky R J, Kowarik G, Tokesi K, Aumayr F 2012 Nucl. Instr. Meth. B 279 182
[15] Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901
-
[1] Briand J P, de Billy L, Charles P, Essabaa S, Briand P, Geller R, Desclaux J P, Bliman S , Ristori C 1990 Phys. Rev. Lett. 65 159
[2] Kurz R, Töglhofer K, Winter H P, Aumayr F, Mann R 1992 Phys. Rev. Lett. 69 1140
[3] Schenkel T, Barnes A V, Hamza A V, Schneider D H, Banks J C, Doyle B L 1998 Phys. Rev. Lett. 80 4325
[4] Ninomiya S, Yamazaki Y, Koike F, Masuda H, Azuma T, Komaki K, Kuroki K, Sekiguchi M 1997 Phys. Rev. Lett. 78 4557
[5] Morishita Y, Hutton R, Torii H A, Komaki K, Brage T, Ando K, Ishii K, Kanai Y, Masuda H, Sekiguchi M, Rosmej F B, Yamazaki Y 2004 Phys. Rev. A 70 012902
[6] Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201
[7] Stolterfoht N, Hellhammer R, Pesic Z D, Hoffmann V, Bumdeslamm J, Petrov A, Fink D, Sulik B, Pedregosa J, McCullough R W 2004 Nucl. Instr. Meth. B 225 169
[8] Stolterfoht N, Hellhammer R, Sobocinski P, Pesic Z D, Bumdeslamm J, Sulik B, Shah M B, Dunn K, Pedregosa J, McCullough R W 2005 Nucl. Instr. Meth. B 235 460
[9] Vikor G Y, Rajendra R T, Pesic Z D, Stolterfoht N, Schuch R 2005 Nucl. Instr. Meth. B 233 218
[10] Vokhmyanina K A, Zhilyakov L A, Kostanovsky A V, Kulikauskas V S, Petukhov V P, Pokhil G P 2006 J. Phys. A: Math. Gen. 39 4775
[11] Schiessl K, Palfinger W, Tokesi K, Nowotny H, Lemell C, Burgdorfer J 2007 Nucl. Instr. Meth. B 258 150
[12] Stolterfoht N, Hellhammer R, Bundesmann J, Fink D 2008 Phys. Rev. A 77 032905
[13] Stolterfoht N, Hellhammer R, Juhász Z, Sulik B, Bayer V, Trautmann C, Bodewits E, de Nijs A J, Dang H M, Hoekstra R 2009 Phys. Rev. A 79 042902
[14] Bereczky R J, Kowarik G, Tokesi K, Aumayr F 2012 Nucl. Instr. Meth. B 279 182
[15] Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901
计量
- 文章访问数: 6155
- PDF下载量: 596
- 被引次数: 0