-
对S原子采用6-311++G**基组, Sn原子采用SDB-cc-pVTZ基组, 利用密度泛函(B3P86)方法对SnS分子进行了基态结构优化, 并研究了外场作用下SnS基态分子键长、能量、能级分布、电荷布居分布、谐振频率和红外谱强度的影响规律.然后利用含时密度泛函(TD-B3P86)方法研究了SnS分子在外场下的激发特性. 结果表明, 在所加的电场范围内(-0.04 a.u.– 0.04 a.u.), 随着正向电场的增大, 分子键长和红外谱强度均是先减小后增大;总能 E, SnS基态分子的最高已占据轨道能量 EH和谐振频率均是先增大后减小; 分子的最低未占空轨道能量 EL和能隙 Eg均随正向电场的增大而减小. 随着正向电场的增大, SnS分子由基态至前9个单重激发态跃迁的波长增大, 激发能则减小.Structure of the SnS ground state molecule is optimized by employing density functional theory (B3P86) method with 6-311++G** basis sets for S atom and SDB-cc-pVTZ for Sn atom. The effects of electric filed ranging from -0.04 to 0.04 a.u. are investigated on bond length, total energy, the highest occupied molecular orbital (HOMO) energy level, the lowest unoccupied molecular orbital (LUMO) energy level, energy gap, mulliken atomic charges, harmonic frequency and infrared intensity of SnS ground state molecule. The excited properties of SnS molecule under different electric fields are also studied by using time dependent density functional theory (TD-B3P86) method. The results show that the bond length and infrared intensity are proved to first decrease, then increase with the external field increasing, but the total energy, HOMO energy EH and harmonic frequency are found to first increase, then decrease. The LUMO energy EL and energy gap Eg are proved to decrease with positive direction electric field increasing. The transition wavelengths from the ground state to the first nine excited states increase with positive direction electric field increasing, but excited energies from the ground state to the first nine excited states decrease.
-
Keywords:
- SnS /
- external electric field /
- excited properties
[1] Duan W H, Gu B L, Zhu J L 1990 Acta Phys. Sin. 39 437 (in Chinese) [段文晖, 顾秉林, 朱嘉麟 1990 39 437]
[2] Singh J P, Bedi R K 1991 Thin Solid Films 199 9
[3] Oritz A, Alonso J C, Carcia M, Toriz J 1996 Semicond. Sci. Technol. 11 243
[4] Radot M 1977 Rev. Phys. Appl. 18 345
[5] Prince M B 1955 J. Appl. Phys. 26 534
[6] Nair M T S, Nair P K 1991 Semicond. Sci. Technol. 6 132
[7] Agarwal A, Trivedi P H, Lakshminarayana D 2005 Cryst. Res. Technol. 40 789
[8] Hodes G 2007 Phys. Chem. Chem. Phys. 9 2181
[9] Lukes F, Humlicek J, Schmidt E 1983 Solid State Commun. 45 445
[10] Makinistian L, Albanesi E A 2009 Physica Status Solidi B 246 183
[11] Walsh A, Watson G W 2005 J. Phys. Chem. B 109 18868
[12] Taniguchi M, Johnson R L, Ghijsen J, Cardona M 1990 Phys. Rev. B 42 3634
[13] Lambros A P, Geraleas D, Economou N A 1974 J. Phys. Chem Solids 35 537
[14] Lukes F, Schmidt E, Humlicek J, Dub P, Kosek F 1986 Phys. Stat. Sol. B 137 569
[15] Jalbout A F, Li X H, Abou-Rachid H 2007 Int. J. Quantum. Chem. 107 522
[16] Ma M Z, Xu G L, Xie A D, Chen X J, Zhang Y B, Zhu Z H 2005 Chin. J. Chem. Phys. 18 64 (in Chinese) [马美仲, 徐国亮, 谢安东, 陈晓军, 张永彬, 朱正和 2005 化学 18 64]
[17] Xu G L, Xie H X, Yuan W, Zhan X Z, Liu Y F 2012 Acta Phys. Sin. 61 043104 (in Chinese) [徐国亮, 谢会香, 袁伟, 张现周, 刘玉芳 2012 61 043104]
[18] Frisch M J, Trucks G W, Schegd H B 2003 Gaussian 03, Revision B03 (Pittsburgh PA: Gaussian Inc)
[19] Xu G L, Xiao Y Z, Liu X F, Zhan X Z, Liu Y F 2010 Acta Phys. Sin. 59 7762 (in Chinese) [徐国亮, 夏要争, 刘雪峰, 张现周, 刘玉芳 2010 59 7762]
[20] Martin J M L, Sundermann A 2001 J. Chem. Phys. 114 3408
[21] Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure: Constants of Diatomic Molecules (New York: Van Nostrand Reinhold Company) p 618
[22] Xie A D, Zhou L L, Ruan W, Wu D L, Luo W L 2012 Acta Phys. Sin. 61 043102 (in Chinese) [谢安东, 周玲玲, 阮文, 伍冬兰, 罗文浪 2012 61 043102]
[23] Giri D, Kalyan K D 2005 J. Phys. Chem. A 109 7207
[24] Balasubramanian K 1987 Chem. Phys. Lett. 139 262
-
[1] Duan W H, Gu B L, Zhu J L 1990 Acta Phys. Sin. 39 437 (in Chinese) [段文晖, 顾秉林, 朱嘉麟 1990 39 437]
[2] Singh J P, Bedi R K 1991 Thin Solid Films 199 9
[3] Oritz A, Alonso J C, Carcia M, Toriz J 1996 Semicond. Sci. Technol. 11 243
[4] Radot M 1977 Rev. Phys. Appl. 18 345
[5] Prince M B 1955 J. Appl. Phys. 26 534
[6] Nair M T S, Nair P K 1991 Semicond. Sci. Technol. 6 132
[7] Agarwal A, Trivedi P H, Lakshminarayana D 2005 Cryst. Res. Technol. 40 789
[8] Hodes G 2007 Phys. Chem. Chem. Phys. 9 2181
[9] Lukes F, Humlicek J, Schmidt E 1983 Solid State Commun. 45 445
[10] Makinistian L, Albanesi E A 2009 Physica Status Solidi B 246 183
[11] Walsh A, Watson G W 2005 J. Phys. Chem. B 109 18868
[12] Taniguchi M, Johnson R L, Ghijsen J, Cardona M 1990 Phys. Rev. B 42 3634
[13] Lambros A P, Geraleas D, Economou N A 1974 J. Phys. Chem Solids 35 537
[14] Lukes F, Schmidt E, Humlicek J, Dub P, Kosek F 1986 Phys. Stat. Sol. B 137 569
[15] Jalbout A F, Li X H, Abou-Rachid H 2007 Int. J. Quantum. Chem. 107 522
[16] Ma M Z, Xu G L, Xie A D, Chen X J, Zhang Y B, Zhu Z H 2005 Chin. J. Chem. Phys. 18 64 (in Chinese) [马美仲, 徐国亮, 谢安东, 陈晓军, 张永彬, 朱正和 2005 化学 18 64]
[17] Xu G L, Xie H X, Yuan W, Zhan X Z, Liu Y F 2012 Acta Phys. Sin. 61 043104 (in Chinese) [徐国亮, 谢会香, 袁伟, 张现周, 刘玉芳 2012 61 043104]
[18] Frisch M J, Trucks G W, Schegd H B 2003 Gaussian 03, Revision B03 (Pittsburgh PA: Gaussian Inc)
[19] Xu G L, Xiao Y Z, Liu X F, Zhan X Z, Liu Y F 2010 Acta Phys. Sin. 59 7762 (in Chinese) [徐国亮, 夏要争, 刘雪峰, 张现周, 刘玉芳 2010 59 7762]
[20] Martin J M L, Sundermann A 2001 J. Chem. Phys. 114 3408
[21] Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure: Constants of Diatomic Molecules (New York: Van Nostrand Reinhold Company) p 618
[22] Xie A D, Zhou L L, Ruan W, Wu D L, Luo W L 2012 Acta Phys. Sin. 61 043102 (in Chinese) [谢安东, 周玲玲, 阮文, 伍冬兰, 罗文浪 2012 61 043102]
[23] Giri D, Kalyan K D 2005 J. Phys. Chem. A 109 7207
[24] Balasubramanian K 1987 Chem. Phys. Lett. 139 262
计量
- 文章访问数: 6494
- PDF下载量: 661
- 被引次数: 0