-
在可见光波段(λ=750 nm), 实验研究了在端面辅助情况下, 细纳米银线波导中表面等离极化波激发和辐射的偏振特性. 实验发现在细纳米银线中, 不同偏振态的入射光对应的表面等离极化激元的激发和传输效率有明显不同, 但对应的出射光始终为方向恒定的线偏振光. 对于化学合成的纳米银线, 端面的轴对称性普遍比较好, 对此类纳米银线进行激发时, 如果入射光偏振态与纳米线近似平行, 则激发和传输表面等离极化激元的效率最高; 如果正交,激发和传输效率则最低. 对于某些端面轴对称性较差的纳米银线, 如端面为尖端或类斜面, 当入射光偏振态与纳米线有一定夹角时, 激发和传输表面等离极化激元的效率最高. 在入射光偏振改变的过程中出射光的偏振方向始终与纳米银线平行. 最后结合有限元差分方法理论解释了纳米银线中这种偏振特性的物理机理. 利用纳米银线中表面等离极化激元激发和辐射的偏振特性, 可以在亚波长尺寸上实现对光强和偏振态的调控.We experimentally investigate the dependences of the surface plasmon polarization (SPP) in the Ag nanowires on the polarizations of the excitation light and the emission light with a wavelength of excitation light 750nm. We find that the excitation and transmission efficiency change obviously with the polarization of incident light. However, the emission light is always linearly polarized light with an unchanged polarization direction. For the nanowires synthesized using a self-seeding process, their ends are axisymmetric. When the direction of the incident light is parallel to these Ag nanowires, the excitation and transmission efficiency of SPP are high. Conversely, when the polarization direction of the incident light is perpendicular to the wire axis, it is very low. For the nanowires with asymmetric ends, when the direction of the incident light has an angle with respect to the Ag nanowires, the excitation and transmission efficiency of SPP are high. While the polarization direction of emission light is always parallel to the wire axis which means that the polarization of the emission light does not depend on the polarization direction of the incident light. The polarization characteristics of the SPP in the thin Ag nanowires can realize the nanoscale manipulation of the intensity and polarization.
-
Keywords:
- surface plasmon polarizations /
- Ag nanowires /
- waveguide /
- polarization
[1] William L B, Alain D, Thomas W E 2003 Nature 424 824
[2] Stefan A M 2005 Current. Nanoscience. 1 17
[3] Dai H, Wu X P, Xu H F, Wei M D 2009 Electrochemistry. Communications. 11 1599
[4] Maier S A, Kik P G, Atwater H A 2003 Nature. Materials. 2 229
[5] Guo X, Qiu M, Bao J M, Wiley B J, Yang Q, Zhang X N, Ma Y G, Yu H K, Tong L M 2009 Nano. Lett. 9 4515
[6] Zhu X L, Ma Y, Zhang J S, Xu J, Wu X F, Zhang Y 2010 Phys. Rev. Lett. 105 127402
[7] Aric W S, David A R, Benjamin J W, Xia Y N, Eric R D, Mark A R 2006 Nano. Lett. 6 1822
[8] Li Z P, Hao F, Huang Y Z, Fang Y R, Nordlander P, Xu H X 2009 Nano. Lett. 9 4383
[9] Zhong M L, Li S, Xiong Z H, Zhang Z Y 2012 Acta Phys. Sin. 61 027803 (in Chinese) [钟明亮, 李山, 熊祖洪, 张中月 2012 61 027803]
[10] Knight M W, Grady N K, Bardhan R, Hao F, Nordlander P, Halas N J 2007 Nano Lett. 7 2346
[11] Manjavacas A, Garci a de Abajo F J 2009 Nano. Lett. 9 1285
[12] Wang L L, Ren X F, Liu A P, Liu L, Yong J C 2011 Appl. Phys. Lett. 99 061103
[13] Zhang L W, Zhao Y H, Wang Q, Fang K, Li W S, Qiao W T 2012 Acta Phys. Sin. 61 068401 (in Chinese) [张利伟, 赵玉环, 王勤, 方凯, 李卫彬, 乔文涛 2012 61 068401]
[14] Murphy C J, Jana N R 2002 Adv. Mater. 14 80
[15] Graff A, Wagner D, Ditlbacher H, Kreibig U 2005 Eur. Phys. J. D 34 263
[16] Harald D, Andreas H, Dieter W, Uwe K, Michael R, Ferdinand H, Franz R A, Joachim R K 2005 Phys. Rev. Lett. 95 257403
[17] Li Z P, Bao K, Fang Y R, Huang Y Z, Nordlander P, Xu H X 2010 Nano. Lett. 10 1831
[18] Chen Y T, Nielsen T R, Gregersen N, Lodahl P, Mork J 2010 Phys. Rev. B 81 125431
[19] Ruda H E, Shik A 2005 Phys. Rev. B 72 115308
-
[1] William L B, Alain D, Thomas W E 2003 Nature 424 824
[2] Stefan A M 2005 Current. Nanoscience. 1 17
[3] Dai H, Wu X P, Xu H F, Wei M D 2009 Electrochemistry. Communications. 11 1599
[4] Maier S A, Kik P G, Atwater H A 2003 Nature. Materials. 2 229
[5] Guo X, Qiu M, Bao J M, Wiley B J, Yang Q, Zhang X N, Ma Y G, Yu H K, Tong L M 2009 Nano. Lett. 9 4515
[6] Zhu X L, Ma Y, Zhang J S, Xu J, Wu X F, Zhang Y 2010 Phys. Rev. Lett. 105 127402
[7] Aric W S, David A R, Benjamin J W, Xia Y N, Eric R D, Mark A R 2006 Nano. Lett. 6 1822
[8] Li Z P, Hao F, Huang Y Z, Fang Y R, Nordlander P, Xu H X 2009 Nano. Lett. 9 4383
[9] Zhong M L, Li S, Xiong Z H, Zhang Z Y 2012 Acta Phys. Sin. 61 027803 (in Chinese) [钟明亮, 李山, 熊祖洪, 张中月 2012 61 027803]
[10] Knight M W, Grady N K, Bardhan R, Hao F, Nordlander P, Halas N J 2007 Nano Lett. 7 2346
[11] Manjavacas A, Garci a de Abajo F J 2009 Nano. Lett. 9 1285
[12] Wang L L, Ren X F, Liu A P, Liu L, Yong J C 2011 Appl. Phys. Lett. 99 061103
[13] Zhang L W, Zhao Y H, Wang Q, Fang K, Li W S, Qiao W T 2012 Acta Phys. Sin. 61 068401 (in Chinese) [张利伟, 赵玉环, 王勤, 方凯, 李卫彬, 乔文涛 2012 61 068401]
[14] Murphy C J, Jana N R 2002 Adv. Mater. 14 80
[15] Graff A, Wagner D, Ditlbacher H, Kreibig U 2005 Eur. Phys. J. D 34 263
[16] Harald D, Andreas H, Dieter W, Uwe K, Michael R, Ferdinand H, Franz R A, Joachim R K 2005 Phys. Rev. Lett. 95 257403
[17] Li Z P, Bao K, Fang Y R, Huang Y Z, Nordlander P, Xu H X 2010 Nano. Lett. 10 1831
[18] Chen Y T, Nielsen T R, Gregersen N, Lodahl P, Mork J 2010 Phys. Rev. B 81 125431
[19] Ruda H E, Shik A 2005 Phys. Rev. B 72 115308
计量
- 文章访问数: 9541
- PDF下载量: 1037
- 被引次数: 0