-
基于可调谐半导体激光吸收光谱技术和代数迭代算法(ART)实现燃烧场温度和浓度二维分布重建. 采用时分复用技术, 在1 kHz扫描频率下分别扫描H2O的两条吸收谱线, 7205.25和7416.05 cm-1, 对温度分布在300—1100 K范围内的气体温度场进行了重建. 研究了投影角度和投影光线数目对温度场和浓度场重建结果的影响, 并将温度场重建结果与热电偶测量结果进行比较, 结果表明, 采用四个投影方向时, 温度场重建结果与热电偶测量结果除中心低温区域外基本符合. 当光线数目减少时, 通过在两条光线间增加虚拟光线, 代入到迭代算法中, 增加光线数目, 提高了温度场和浓度场的重建效果. 但此方法受到燃烧场温度梯度大小的影响, 即在两条光线之间气体温度梯度较大, 增加虚拟光线提高温度场重建效果不明显.
-
关键词:
- 可调谐半导体激光吸收光谱 /
- 温度场二维重建 /
- 浓度场二维重建 /
- 代数迭代算法
Based on the tunable diode laser absorption spectroscopy, the combustion gas concentration and temperature distribution are reconstructed using algebraic iterative reconstruction technique (ART). Time division multiplexing technology is adopted to scan two H2O absorption transitions (7205.25 cm-1 and 7416.05 cm-1) simultaneously at 1 kHz repetition rate. The influences of projected angle and the number of beams on the temperature and concentration field reconstruction are studied. Compared with the thermocouple readings, the temperature distribution reconstruction has a well agreement except a low temperature area in the middle of the combustion field. Aiming to achieve an optimal reconstruction with a limited number of beams, a few virtual beams are added to the ART method. Through this method, the effectivenesses of temperature and concentration field reconstructions increase, but there is not an obvious improvement when a large gradient of temperature exists between two lines.-
Keywords:
- tunable diode laser absorption spectroscopy /
- two-dimensional temperature reconstruction /
- concentration reconstruction /
- algebraic reconstruction technique (ART)
[1] Brown M S 2012 50th AIAA Aerospace Science Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, January 09-12, 2012
[2] Jackson K R, Gruber M R, Buccellato S 2011 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, California, April 11-14, 2011
[3] Lindstrom C D, Jackson K R, Williams S 2009 AIAA J. 47 2368
[4] Liu J T C, Rieker G B, Jeffries J B, Gruber M R, Carter D C, Mathur T, Hanson R K 2005 Appl. Opt. 44 6701
[5] Liu X, Jefferies J B, Hanson R K 2007 AIAA J. 45 411
[6] Lyle K H, Jeffries J B, Hanson R K, Winter M 2007 AIAA J. 45 2213
[7] Yu X, Li F, Chen L 2010 Acta Mech. Sin. 26 147
[8] Lou N, Li N, Wen C 2012 Spectrosc Spec. Anal. 32 1329 (in Chinese) [娄南征, 李宁, 翁春生 2012 光谱学与光谱分析 32 1329]
[9] Li N, Wen C 2010 Acta Phys. Sin. 59 6914 (in Chinese) [李宁, 翁春生 2010 59 6914]
[10] Busa K M, Bryner E, McDaniel J C, Goyne C P, Smith C T 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando, Florida City, January, 4-7, 2011
[11] Kasyutich V L, Martin P A 2011 Appl. Phys. B 102 149
[12] Wang F, Cen K F, Li N 2010 Meas. Sci. Technol. 21 1
[13] Li N, Weng C 2011 Chin. Opt. Lett. 9 061201
[14] Ma L, Cai W 2008 Appl. Opt. 47 4187
[15] Ma L, Cai W W, Caswell A W, Kraetshmer T, Sanders S T, Roy S, Gord J R 2009 Opt. Express 17 8602
[16] Rothman L S, Gordon I E, Barbe A, Benner D C, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J P, Chance K, Coudert L H, Dana V, Devi V M, Fally S, Flaud J M, Gamache R R, Goldman A, Jacquemart D, Kleiner I, Lacome N, Lafferty W J, Mandin J Y, Massie S T, Mikhailenko S N, Miller C E, Moazzen-Ahmadi N, Naumenko O V, Nikitin A V, Orphal J, Perevalov V I, Perrin A, Predoi-Cross A, Rinsland C P, Rotger M, Šimečková M, Smith M A H, Sung K, Tashkun S A, Tennyson J, Toth R A, Vandaele A C, Vander Auwera J 2009 J. Quant. Spectrosc. RA 110 533
[17] Zhou X, Liu X, Jeffries J B, Hanson R K 2003 Meas. Sci. Technol. 14 1459
[18] Zhou X, Jeffries J B, Hanson R K 2005 Appl. Phys. B 81 711
[19] Hansen P C, Hansen M S 2012 J. Comput Appl. Math. 236 2167
-
[1] Brown M S 2012 50th AIAA Aerospace Science Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, January 09-12, 2012
[2] Jackson K R, Gruber M R, Buccellato S 2011 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, California, April 11-14, 2011
[3] Lindstrom C D, Jackson K R, Williams S 2009 AIAA J. 47 2368
[4] Liu J T C, Rieker G B, Jeffries J B, Gruber M R, Carter D C, Mathur T, Hanson R K 2005 Appl. Opt. 44 6701
[5] Liu X, Jefferies J B, Hanson R K 2007 AIAA J. 45 411
[6] Lyle K H, Jeffries J B, Hanson R K, Winter M 2007 AIAA J. 45 2213
[7] Yu X, Li F, Chen L 2010 Acta Mech. Sin. 26 147
[8] Lou N, Li N, Wen C 2012 Spectrosc Spec. Anal. 32 1329 (in Chinese) [娄南征, 李宁, 翁春生 2012 光谱学与光谱分析 32 1329]
[9] Li N, Wen C 2010 Acta Phys. Sin. 59 6914 (in Chinese) [李宁, 翁春生 2010 59 6914]
[10] Busa K M, Bryner E, McDaniel J C, Goyne C P, Smith C T 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando, Florida City, January, 4-7, 2011
[11] Kasyutich V L, Martin P A 2011 Appl. Phys. B 102 149
[12] Wang F, Cen K F, Li N 2010 Meas. Sci. Technol. 21 1
[13] Li N, Weng C 2011 Chin. Opt. Lett. 9 061201
[14] Ma L, Cai W 2008 Appl. Opt. 47 4187
[15] Ma L, Cai W W, Caswell A W, Kraetshmer T, Sanders S T, Roy S, Gord J R 2009 Opt. Express 17 8602
[16] Rothman L S, Gordon I E, Barbe A, Benner D C, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J P, Chance K, Coudert L H, Dana V, Devi V M, Fally S, Flaud J M, Gamache R R, Goldman A, Jacquemart D, Kleiner I, Lacome N, Lafferty W J, Mandin J Y, Massie S T, Mikhailenko S N, Miller C E, Moazzen-Ahmadi N, Naumenko O V, Nikitin A V, Orphal J, Perevalov V I, Perrin A, Predoi-Cross A, Rinsland C P, Rotger M, Šimečková M, Smith M A H, Sung K, Tashkun S A, Tennyson J, Toth R A, Vandaele A C, Vander Auwera J 2009 J. Quant. Spectrosc. RA 110 533
[17] Zhou X, Liu X, Jeffries J B, Hanson R K 2003 Meas. Sci. Technol. 14 1459
[18] Zhou X, Jeffries J B, Hanson R K 2005 Appl. Phys. B 81 711
[19] Hansen P C, Hansen M S 2012 J. Comput Appl. Math. 236 2167
计量
- 文章访问数: 9827
- PDF下载量: 652
- 被引次数: 0