-
设计了一种六角点阵蜂窝状包层光子晶体光纤, 该光纤中心缺失一根空气柱形成纤芯, 包层由椭圆空气孔和小圆空气孔组成. 基于全矢量有限元法并结合各向异性完美匹配层边界条件, 对其双折射、色散、非线性系数、 约束损耗和模场等特性进行了数值模拟; 计算了具有相同参数的椭圆状包层光子晶体光纤的双折射、色散及非线性系数. 结果发现, 若调整光纤结构参数为孔间隔Λ =1.15 μm, 空气孔椭圆率η =0.5, 相对孔间隔比f=0.48, 小圆孔直径d1=0.4 μm时, 在波长1.55 μm处, 该光纤的双折射B高达1.02×10-2, 比传统光纤高约两个数量级, 同时, 该光纤在低损耗通信窗口C波段呈现负色散和负色散斜率, 其色散斜率在整个C波段附近在 -0.132— -0.121 ps·km-1·nm-2范围内波动, 非线性系数为45.7 km-1·W-1, 约束损耗接近102 dB·km-1. 蜂窝状包层比椭圆状包层光子晶体光纤的双折射及大负色散特性明显提高, 非线性系数低, 更有利于进行色散补偿.A novel hexagonal honeycomb lattice photonic crystal fiber is proposed, which is composed of a central defect core, a cladding with elliptical air-hole and small round air-holes. Based on the full vector finite element method with anisotropic perfectly matched layers, its birefringence, dispersion, nonlinearity, leakage loss and mode field are numerically investigated. We compare hexagonal honeycomb lattice photonic crystal fiber and hexagonal elliptical lattice photonic crystal fiber, both of which have the same structure parameters. Numerical results indicate that the proposed fiber shows high birefringence and negative dispersion effect. The birefringence is 1.02× 10-2, both its dispersion and dispersion slope are negative, the dispersion slope values are between -0.132- -0.121 ps·km-1·nm-2 over C band, the leakage loss is close to 102 dB·m-1 and the non-linear coefficient is 45.7 km-1·W-1 at a wavelength of 1.55 μm, if the parameter is selected as Λ =1.15 μm, η =0.5, f=0.48, and d1=0.4 μm. It is found that the hexagonal honeycomb lattice photonic crystal fiber easily obtains high birefringence, large negative dispersion and low non-linear coefficient. It is demonstrated that the hexagonal honeycomb lattice photonic crystal fiber has huge potential in designing dispersion compensation photonic crystal fiber.
-
Keywords:
- fiber optics and waveguides /
- high birefringence /
- full vector finite element method /
- negative dispersion
[1] Knight J C, Russell P S 2002 Science 296 276
[2] Xia C M, Zhou G Y, Han Y, Liu Z L, Hou L T 2011 Acta Phys. Sin. 60 094213 (in Chinese) [夏长明, 周桂耀, 韩颖, 刘兆伦, 侯蓝田 2011 60 094213]
[3] Zhao X T, Hou L T, Liu Z L, Wang W, Wei H Y, Ma J R 2007 Acta Phys. Sin. 56 2275 (in Chinese) [赵兴涛, 侯蓝田, 刘兆伦, 王伟, 魏红彦, 马景瑞 2007 56 2275]
[4] Wang J, Lei N G, Yu C X 2007 Acta Phys. Sin. 56 946 (in Chinese) [王健, 雷乃光, 余重秀 2007 56 946]
[5] Zhang F D, Liu X Y, Zhang M, Ye P D 2006 Acta Phys. Sin. 55 6447 (in Chinese) [张方迪, 刘小毅, 张民, 叶培大 2006 55 6447]
[6] Jiang L H, Hou L T 2010 Acta Phys. Sin. 59 1095 (in Chinese) [姜凌红, 侯蓝田 2010 59 1095]
[7] Zhang Y N 2010 Acta Phys. Sin. 59 8632 (in Chinese) [张亚妮 2010 59 8632]
[8] Zhang Y N 2010 Acta Phys. Sin. 59 4050 (in Chinese) [张亚妮 2010 59 4050]
[9] Zhang L C, Zhou G Y, Hou L T 2011 Acta Phys. Sin. 60 054217 (in Chinese) [张立超, 周桂耀, 侯蓝田 2011 60 054217]
[10] Selleri S, Petracek J 2001 Opt. Quantum Electron. 33 378
[11] Zhang Y N 2008 J. Mod. Opt. 55 3563
[12] Saitoh K, Koshiba M, Hasegawa T, Sasaoka E 2003 Opt. Express 11 843
[13] Jiang L H, Hou L T, Yang Q Q 2010 Acta Phys. Sin. 59 4726 (in Chinese) [姜凌红, 侯蓝田, 杨倩倩 2010 59 4726]
[14] Liu Y C, Lai Y 2005 Opt. Express 13 225
[15] Tan X L, Geng Y F, Zhou J 2011 Opt. Laser Technol. 43 1331
[16] Fujisawa T, Saitoh K, Wada K, Koshiba M 2005 Opt. Express 13 893
[17] Yang Q Q, Hou L T 2009 Acta Phys. Sin. 58 8345 (in Chinese) [杨倩倩, 侯蓝田 2009 58 8345]
[18] Yan H F, Yu C Y, Tian H D, Liu Y M, Han L H 2010 Acta Phys. Sin. 59 3273 (in Chinese) [闫海峰, 俞重远, 田宏达, 刘玉敏, 韩利红 2010 59 3273]
[19] Yang X, Zhao C L, Peng Q, Zhou X, Lu C 2005 Opt. Commun. 250 63
[20] Chen M Y, Yu R J, Zhao A P 2004 J. Opt. A: Pure Appl. Opt. 6 997
[21] Issa N A, van Eijkelenborg M A, Fellew M, Cox F, Henry G, Large M C 2004 J. Opt. Lett. 29 1336
[22] Poli F, Cucinotta A, Selleri S, Bouk A H 2004 IEEE Photon. Technol. Lett. 16 1065
[23] Liu X M, Zhou X Q, Lu C 2005 Phys. Rev. A 72 013811
-
[1] Knight J C, Russell P S 2002 Science 296 276
[2] Xia C M, Zhou G Y, Han Y, Liu Z L, Hou L T 2011 Acta Phys. Sin. 60 094213 (in Chinese) [夏长明, 周桂耀, 韩颖, 刘兆伦, 侯蓝田 2011 60 094213]
[3] Zhao X T, Hou L T, Liu Z L, Wang W, Wei H Y, Ma J R 2007 Acta Phys. Sin. 56 2275 (in Chinese) [赵兴涛, 侯蓝田, 刘兆伦, 王伟, 魏红彦, 马景瑞 2007 56 2275]
[4] Wang J, Lei N G, Yu C X 2007 Acta Phys. Sin. 56 946 (in Chinese) [王健, 雷乃光, 余重秀 2007 56 946]
[5] Zhang F D, Liu X Y, Zhang M, Ye P D 2006 Acta Phys. Sin. 55 6447 (in Chinese) [张方迪, 刘小毅, 张民, 叶培大 2006 55 6447]
[6] Jiang L H, Hou L T 2010 Acta Phys. Sin. 59 1095 (in Chinese) [姜凌红, 侯蓝田 2010 59 1095]
[7] Zhang Y N 2010 Acta Phys. Sin. 59 8632 (in Chinese) [张亚妮 2010 59 8632]
[8] Zhang Y N 2010 Acta Phys. Sin. 59 4050 (in Chinese) [张亚妮 2010 59 4050]
[9] Zhang L C, Zhou G Y, Hou L T 2011 Acta Phys. Sin. 60 054217 (in Chinese) [张立超, 周桂耀, 侯蓝田 2011 60 054217]
[10] Selleri S, Petracek J 2001 Opt. Quantum Electron. 33 378
[11] Zhang Y N 2008 J. Mod. Opt. 55 3563
[12] Saitoh K, Koshiba M, Hasegawa T, Sasaoka E 2003 Opt. Express 11 843
[13] Jiang L H, Hou L T, Yang Q Q 2010 Acta Phys. Sin. 59 4726 (in Chinese) [姜凌红, 侯蓝田, 杨倩倩 2010 59 4726]
[14] Liu Y C, Lai Y 2005 Opt. Express 13 225
[15] Tan X L, Geng Y F, Zhou J 2011 Opt. Laser Technol. 43 1331
[16] Fujisawa T, Saitoh K, Wada K, Koshiba M 2005 Opt. Express 13 893
[17] Yang Q Q, Hou L T 2009 Acta Phys. Sin. 58 8345 (in Chinese) [杨倩倩, 侯蓝田 2009 58 8345]
[18] Yan H F, Yu C Y, Tian H D, Liu Y M, Han L H 2010 Acta Phys. Sin. 59 3273 (in Chinese) [闫海峰, 俞重远, 田宏达, 刘玉敏, 韩利红 2010 59 3273]
[19] Yang X, Zhao C L, Peng Q, Zhou X, Lu C 2005 Opt. Commun. 250 63
[20] Chen M Y, Yu R J, Zhao A P 2004 J. Opt. A: Pure Appl. Opt. 6 997
[21] Issa N A, van Eijkelenborg M A, Fellew M, Cox F, Henry G, Large M C 2004 J. Opt. Lett. 29 1336
[22] Poli F, Cucinotta A, Selleri S, Bouk A H 2004 IEEE Photon. Technol. Lett. 16 1065
[23] Liu X M, Zhou X Q, Lu C 2005 Phys. Rev. A 72 013811
计量
- 文章访问数: 9741
- PDF下载量: 629
- 被引次数: 0