-
本文在经过固溶和冷变形处理Cu-Cr-Zr合金的等温时效过程中同时施加电流密度为100 A/cm2的直流电流和不同磁感应强度的静磁场, 发现电磁复合场能显著影响Cu-Cr-Zr合金的组织及性能.和无磁场下时效后合金性能相比, 施加磁场后的合金电导率和显微硬度值均有一定程度的升高, 其中在350 ℃, 10 T磁场下效果最明显, 分别升高了22.1% IACS和25.3 HV. 利用透射电镜观察显微组织观察发现, 施加磁场后合金组织中位错密度有所降低, 同时出现了大量细小弥散的铬析出物, 表明电磁复合场能进一步促进铜合金的时效过程, 在低温时效时尤其明显. 分析认为, 电磁复合场对Cu-Cr-Zr合金时效过程的促进作用机理是磁场增强了电流的"电子风"效应.In this paper, Cu-0.41wt.%Cr-0.21wt.%Zr alloy is subjected to an isochronal aging treatment with a DC electric current (100A/cm2) and a static magnetic field simultaneously imposed. The alloy in the form of plate with a thickness of 2 mm is solid-solution-treated and cold deformed with a total area reduction of more than 98% before aging. The results indicate that the conductivity and micro hardness of the sample are significantly improved by the imposed electric-magnetic field. The conductivity of the sample increases with magnetic flux density (MFD) improving, especially at a lower aging temperature (350 ℃), and a maximum improvement of 22.1% IACS in conductivity could be obtained with a 10 T magnetic field. For the property of micro hardness, it increases with MFD increasing at a lower aging temperature (350 ℃), while at a higher aging temperature, it first increases and then decreases with MFD increasing. The effects of the DC current and magnetic field on the microstructure of the alloy are investigated by transmission electron microscopy. A lower dislocation density and more Cr precipitation are observed under electric-magnetic couple field than under the DC current only. It indicates that the electric and magnetic fields enhance the aging process of Cu-Cr-Zr alloy distinctly. According to the experimental results, we believe that the main mechanism of the influence of electric and magnetic fields on the Cu-Cr-Zr alloy is that the magnetic field enhances the interaction between solute atoms, vacancies, dislocations and electron wind force, thereby intensifing the effect of the dc current.
-
Keywords:
- static magnetic and electric field /
- Cu-Cr-Zr alloy /
- electric conductivity /
- micro hardness
[1] Qiang L, Xiang Z, Yan G 2006 Metall. Mater. Trans. A 37 3233
[2] Liu P, Kang B X, Cao G 1999 Mater. Sci. Eng. A 265 262
[3] Vinogradov A, Patlan V, Suzuki Y 2003 Acta Mater. 50 1639
[4] Henmi Z, Nagai T 1969 Trans. Jpn. Inst. Metals. 10 305
[5] Tsuchiya K, Kawamura H 1996 J. Nucl. Mater. 233-237 913
[6] Watanabe C, Monzen R, Tazaki K 2008 J. Mater. Sci. 43 813
[7] Shimotomai M, Maruta K, Mine K, Matsui M 2003 Acta Mater. 51 2921
[8] Peters C T, Miodownik A P 1973 Scripta Metall. 7 955
[9] Martikainen H O, Lindroos V K, 1981 Scand. J. Metall. 10 3
[10] Youdelis W V, Colton D R 1964 J. Canadian Journal of Physics 42 2217
[11] Nakajima H, Maekawa S 1985 Japan Inst. Metals. 26 1
[12] Liu W C 2006 Ma. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [刘万忱 2007 硕士学位论文 (大连: 大连理工大学)]
[13] Koppenaal T J, Simcoe C R 1963 Trans. Met. Soc. AIME. 227 615
[14] Zhou Q, Yang Y, Tang J, Hu Z 2006 Acta Metall. Sin. 42 28
[15] Conrd H, Karam N, Mannan S 1983 Scripta Mater. 17 411
[16] Conrd H 2000 Mater. Sci. Eng. A 287 227
[17] Wang Z Q, Zhong Y B, Lei Z S, Ren W L, Ren Z M, Deng K 2009 J. Alloy Compd. 471 172
[18] Wang Z Q, Zhong Y B, Cao G H, Wang C, Wang J, Ren W L, Ren Z M. 2009 J. Alloy Compd. 479 303
[19] Lou L, Zhong Y B, Ren Z M 2006 Chin J Nonferrous Met. 16 728 (in Chinese) [楼磊, 钟云波, 任忠鸣 2006 中国有色金属学报 16 728]
[20] Suzuki H, Kanno M J 1972 Japan Inst. Metals. 36 363
-
[1] Qiang L, Xiang Z, Yan G 2006 Metall. Mater. Trans. A 37 3233
[2] Liu P, Kang B X, Cao G 1999 Mater. Sci. Eng. A 265 262
[3] Vinogradov A, Patlan V, Suzuki Y 2003 Acta Mater. 50 1639
[4] Henmi Z, Nagai T 1969 Trans. Jpn. Inst. Metals. 10 305
[5] Tsuchiya K, Kawamura H 1996 J. Nucl. Mater. 233-237 913
[6] Watanabe C, Monzen R, Tazaki K 2008 J. Mater. Sci. 43 813
[7] Shimotomai M, Maruta K, Mine K, Matsui M 2003 Acta Mater. 51 2921
[8] Peters C T, Miodownik A P 1973 Scripta Metall. 7 955
[9] Martikainen H O, Lindroos V K, 1981 Scand. J. Metall. 10 3
[10] Youdelis W V, Colton D R 1964 J. Canadian Journal of Physics 42 2217
[11] Nakajima H, Maekawa S 1985 Japan Inst. Metals. 26 1
[12] Liu W C 2006 Ma. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [刘万忱 2007 硕士学位论文 (大连: 大连理工大学)]
[13] Koppenaal T J, Simcoe C R 1963 Trans. Met. Soc. AIME. 227 615
[14] Zhou Q, Yang Y, Tang J, Hu Z 2006 Acta Metall. Sin. 42 28
[15] Conrd H, Karam N, Mannan S 1983 Scripta Mater. 17 411
[16] Conrd H 2000 Mater. Sci. Eng. A 287 227
[17] Wang Z Q, Zhong Y B, Lei Z S, Ren W L, Ren Z M, Deng K 2009 J. Alloy Compd. 471 172
[18] Wang Z Q, Zhong Y B, Cao G H, Wang C, Wang J, Ren W L, Ren Z M. 2009 J. Alloy Compd. 479 303
[19] Lou L, Zhong Y B, Ren Z M 2006 Chin J Nonferrous Met. 16 728 (in Chinese) [楼磊, 钟云波, 任忠鸣 2006 中国有色金属学报 16 728]
[20] Suzuki H, Kanno M J 1972 Japan Inst. Metals. 36 363
计量
- 文章访问数: 9359
- PDF下载量: 510
- 被引次数: 0