-
利用有序算符内的积分技术, 给出了三参数双模压缩算符, 构建了三参数双模压缩粒子数态, 并且研究了该量子态的压缩效应、反聚束效应和对Cauchy-Schwartze不等式的违背. 给出了量子态产生压缩效应和反聚束效应的条件, 以及三参数双模压缩粒子数态的Wigner函数的解析式. 讨论了参数变化和光子数变化对压缩效应、反聚束效应和Cauchy-Schwartze不等式的违背的影响. 研究结果表明: 随光子数的增大, 压缩效应、反聚束效应和光场两模间的非经典相关性减弱; 另一方面, 随参数模的增大, 压缩效应增强, 但反聚束效应和光场两模间的非经典相关性却减弱.The three-parameter two-mode squeezed number state is proposed by the technique of integration in an ordered product of operators. Its squeezing, antibunching effect and Cauchy-Schwartz inequality are analysed. The conditions under which squeezing or antibunching effect is displayed, are given. The effects of the complex parameter and photon number on squeezing , antibunching effect and Cauchy-Schwartz inequality of the field are discussed. The results indicate that its squeezing, antibunching effect and the degree of violation of Cauchy-Schwartz inequality of two-mode field are all weakened with the increase of photon number; on the other hand, its antibunching effect and the degree of violation of Cauchy-Schwartz inequality of two-mode field are weakened with the increase of the complex parameter modulus, while its squeezing is strengthened with the increase of the complex parameter modulus.
-
Keywords:
- quantum optics /
- two-mode squeezed number state /
- squeezing /
- antibunching effect
[1] Lu D M 2008 Chin. Phys. B 17 618
[2] Lan H J, Zeng L H, Wei L F 2002 Acta Sin. Quantum Opt. 8 174 (in Chinese) [兰海江, 曾令宏, 韦联福 2002 量子光学学报 8 174]
[3] Ma S J, Luo W W 2012 Chin. Phys. B 21 024203
[4] Huang C Q, Han D A, Lu H, Zhou M X 2010 Acta Sin. Quantum Opt. 16 170 (in Chinese) [黄纯青, 韩定安, 路洪, 周民轩 2010 量子光学学报 16 170]
[5] Wang X Q, Lu H X, Zhao J Q 2011 Acta Phys. Sin. 60 110301 (in Chinese) [王晓芹, 逯怀新, 赵加强 2011 60 110301]
[6] Yu H J, Du J M 2011 Acta Sin. Quantum Opt. 17 280 (in Chinese) [余海军, 杜建明 2011 量子光学学报 17 280]
[7] Sun Z H, Fan H Y 2000 Acta Phys. Sin. 49 74 (in Chinese) [孙治湖, 范洪义 2000 49 74]
[8] Li H Q, Xu S M, Xu X L, Jiang J J 2009 Acta Phys. Sin. 58 3806 (in Chinese) [李洪奇, 徐世民, 徐兴磊, 蒋继建 2009 58 3806]
[9] Song J, Fan H Y 2010 Acta Phys. Sin. 59 6806 (in Chinese) [宋军, 范洪义 2010 59 6806]
[10] Fan H Y, Yu G C 2002 Phys. Rev. A 65 033829
[11] Fan H Y 2002 Phys. Rev. A 65 064102
[12] Yang M, Wang J S, Meng X G 2011 Int. J. Theor. Phys. 50 3348
[13] Fan H Y 2005 From Quantum Mechanics to Quantum Optics (Shanghai: Shanghai Jiaotong University Press) p72 (in Chinese) [范洪义 2005 从量子力学到量子光学 (上海: 海交通大学出版社) 第72页]
[14] Meng X G, Wang J S, Fan H Y 2007 Phys. Lett. A 363 12
-
[1] Lu D M 2008 Chin. Phys. B 17 618
[2] Lan H J, Zeng L H, Wei L F 2002 Acta Sin. Quantum Opt. 8 174 (in Chinese) [兰海江, 曾令宏, 韦联福 2002 量子光学学报 8 174]
[3] Ma S J, Luo W W 2012 Chin. Phys. B 21 024203
[4] Huang C Q, Han D A, Lu H, Zhou M X 2010 Acta Sin. Quantum Opt. 16 170 (in Chinese) [黄纯青, 韩定安, 路洪, 周民轩 2010 量子光学学报 16 170]
[5] Wang X Q, Lu H X, Zhao J Q 2011 Acta Phys. Sin. 60 110301 (in Chinese) [王晓芹, 逯怀新, 赵加强 2011 60 110301]
[6] Yu H J, Du J M 2011 Acta Sin. Quantum Opt. 17 280 (in Chinese) [余海军, 杜建明 2011 量子光学学报 17 280]
[7] Sun Z H, Fan H Y 2000 Acta Phys. Sin. 49 74 (in Chinese) [孙治湖, 范洪义 2000 49 74]
[8] Li H Q, Xu S M, Xu X L, Jiang J J 2009 Acta Phys. Sin. 58 3806 (in Chinese) [李洪奇, 徐世民, 徐兴磊, 蒋继建 2009 58 3806]
[9] Song J, Fan H Y 2010 Acta Phys. Sin. 59 6806 (in Chinese) [宋军, 范洪义 2010 59 6806]
[10] Fan H Y, Yu G C 2002 Phys. Rev. A 65 033829
[11] Fan H Y 2002 Phys. Rev. A 65 064102
[12] Yang M, Wang J S, Meng X G 2011 Int. J. Theor. Phys. 50 3348
[13] Fan H Y 2005 From Quantum Mechanics to Quantum Optics (Shanghai: Shanghai Jiaotong University Press) p72 (in Chinese) [范洪义 2005 从量子力学到量子光学 (上海: 海交通大学出版社) 第72页]
[14] Meng X G, Wang J S, Fan H Y 2007 Phys. Lett. A 363 12
计量
- 文章访问数: 7582
- PDF下载量: 534
- 被引次数: 0