搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击加载下Zr51Ti5Ni10Cu25Al9金属玻璃的塑性行为

俞宇颖 习锋 戴诚达 蔡灵仓 谭华 李雪梅 胡昌明

引用本文:
Citation:

冲击加载下Zr51Ti5Ni10Cu25Al9金属玻璃的塑性行为

俞宇颖, 习锋, 戴诚达, 蔡灵仓, 谭华, 李雪梅, 胡昌明

Plastic behavior of Zr51Ti5Ni10Cu25Al9 metallic glass under planar shock loading

Yu Yu-Ying, Xi Feng, Dai Cheng-Da, Cai Ling-Cang, Tan Hua, Li Xue-Mei, Hu Chang-Ming
PDF
导出引用
  • 进行了1027 GPa应力范围内Zr51Ti5Ni10Cu25Al9金属玻璃的平面冲击实验以研究其高压-高应变率加载下的塑性行为.由样品自由面粒子速度剖面的分析获得了冲击加载过程的轴向应力,并通过轴向应力与静水压线的比较获得剪应力.实验结果表明,尽管存在明显的松弛效应,但Zr基金属玻璃的Hugoniot弹性极限随着冲击应力的增加而增加.然而,塑性波阵面上的剪应力则显示先硬化而后软化现象,而且软化的幅度随冲击应力的增加而增加.冲击加载下Zr基金属玻璃的上述剪应力变化特征与分子动力学模拟结果比较一致,但与压剪实验结果和一维应力冲击实验结果明显不同.
    Planar shock compression experiments are performed on a Zr-based bulk metallic glass (BMG), Zr51Ti5Ni10Cu25Al9 at peak shock stresses from 10 GPa to 27 GPa to investigate its plastic behavior under high pressure and high strain-rate. The particle velocity profiles measured at the free surface of the samples are analyzed to estimate longitudinal stresses of the Zr-based BMG in the shock loading process,and then shear stresses are obtained by comparing longitudinal stresses with a hydrostat. Though there is an obvious relaxation effect after elastic front, the Hugoniot elastic limit of the Zr-based BMG is found to increase with shock stress increasing. However, the shear stresses across the plastic shock front display stress hardening above the Hugoniot elastic limit followed by a stress relaxation (softening) to Hugoniot state, and the relaxation level also increases with shock stress increasing. The changes of shear stresses under planar shock compression are consistent with the results from molecular dynamic simulations, but obviously different from the pressure-shear impact experimental results or uniaxial stress impact experimental results.
    • 基金项目: 国家自然科学基金(批准号: 10732010, 10972206, 11172281, 10802080)、 国家自然科学基金委员会与中国工程物理研究院联合基金(批准号: 10776029/A06)、 冲击波物理与爆轰物理重点实验室(批准号: 9140C6701021102)和中国工程物理研究院科学发展基金(批准号: 2010A0101001和2010B0101002)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10732010, 10972206, 11172281, 10802080), the NSAF(Grant No. 10776029/A06), the Science and Technology Foundation of National Key Laboratory of Shock Wave and Detonation Physics(Grant No.9140C6701021102), and the Science Foundation of China Academy of Engineering Physics (Grant Nos. 2010A0101001 and 2010B0101002).
    [1]

    Johnson W L 1999 MRS bull. 24 42

    [2]

    Inoue A 2000 Acta Mater. 48 279

    [3]

    Wang W H, Dong C, Shek C H 2004 Mater Sci Eng. 44 45

    [4]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067

    [5]

    Trexler M M, Thadhani N N 2010 Prog Mater Sci. 55 759

    [6]

    Mashimo T, Togo H, Zhang Y, Uemura Y, Kinoshita T, Kodama M, Kawamura Y 2006 Appl. Phys. Lett. 89 241904

    [7]

    Xi F, Yu Y Y, Dai C D, Zhang Y , Cai L C 2010 J. Appl. Phys. 108 083537

    [8]

    Togo H, Zhang Y, Kawamura Y, Mashimo T 2007 Mat. Sci. Eng. A 449-451 264

    [9]

    Turneaure S J, Dwivedi S K, Gupta Y M 2007 J. Appl. Phys. 101 043514

    [10]

    Yuan F P, Prakash V 2007 J Mater. Res. 22 402

    [11]

    Zhuang S, Lu J, Ravichandran G 2002 Appl. Phys. Lett. 80 4522

    [12]

    Turneaure S J, Winey J M, Gupta Y M 2004 Appl. Phys. Lett. 84 1692

    [13]

    Turneaure S J, Winey J M, Gupta Y M 2006 J. Appl. Phys. 100 063522

    [14]

    Yuan F P, Prakash V, Lewandowski J J 2010 Mechanics and Materials. 42 248

    [15]

    Arman B, Luo S N, Germann T C, Cagin T 2010 Phys. Rev. B 81 144201

    [16]

    Weng J D, Tan H, Wang X, Ma Y, Hu S L, Wang X S 2006 Appl. Phys. Lett. 89 111101

    [17]

    Zaretsky E B, Kanel G I, Razorenov S V, Baumung K 2005 Int. J. Impact Engng. 31 41

    [18]

    Hu J B, Tan H, Yu Y Y, Dai C D, Ran X W 2008 Acta Phys. Sin. 57 405 (in Chinese) [胡建波, 谭华, 俞宇颖, 戴诚达, 冉宪文 2008 57 405]

    [19]

    Conner R D, Dandliker R B, Scruggs V, Johnson W L 2000 Int. J. Impact Engng. 24 435

  • [1]

    Johnson W L 1999 MRS bull. 24 42

    [2]

    Inoue A 2000 Acta Mater. 48 279

    [3]

    Wang W H, Dong C, Shek C H 2004 Mater Sci Eng. 44 45

    [4]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067

    [5]

    Trexler M M, Thadhani N N 2010 Prog Mater Sci. 55 759

    [6]

    Mashimo T, Togo H, Zhang Y, Uemura Y, Kinoshita T, Kodama M, Kawamura Y 2006 Appl. Phys. Lett. 89 241904

    [7]

    Xi F, Yu Y Y, Dai C D, Zhang Y , Cai L C 2010 J. Appl. Phys. 108 083537

    [8]

    Togo H, Zhang Y, Kawamura Y, Mashimo T 2007 Mat. Sci. Eng. A 449-451 264

    [9]

    Turneaure S J, Dwivedi S K, Gupta Y M 2007 J. Appl. Phys. 101 043514

    [10]

    Yuan F P, Prakash V 2007 J Mater. Res. 22 402

    [11]

    Zhuang S, Lu J, Ravichandran G 2002 Appl. Phys. Lett. 80 4522

    [12]

    Turneaure S J, Winey J M, Gupta Y M 2004 Appl. Phys. Lett. 84 1692

    [13]

    Turneaure S J, Winey J M, Gupta Y M 2006 J. Appl. Phys. 100 063522

    [14]

    Yuan F P, Prakash V, Lewandowski J J 2010 Mechanics and Materials. 42 248

    [15]

    Arman B, Luo S N, Germann T C, Cagin T 2010 Phys. Rev. B 81 144201

    [16]

    Weng J D, Tan H, Wang X, Ma Y, Hu S L, Wang X S 2006 Appl. Phys. Lett. 89 111101

    [17]

    Zaretsky E B, Kanel G I, Razorenov S V, Baumung K 2005 Int. J. Impact Engng. 31 41

    [18]

    Hu J B, Tan H, Yu Y Y, Dai C D, Ran X W 2008 Acta Phys. Sin. 57 405 (in Chinese) [胡建波, 谭华, 俞宇颖, 戴诚达, 冉宪文 2008 57 405]

    [19]

    Conner R D, Dandliker R B, Scruggs V, Johnson W L 2000 Int. J. Impact Engng. 24 435

  • [1] 江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗. 局部塑性变形下铁基金属玻璃的致密化和非均匀性增强.  , 2022, 71(5): 058101. doi: 10.7498/aps.71.20211304
    [2] 华颖鑫, 刘福生, 耿华运, 郝龙, 于继东, 谭叶, 李俊. 多次冲击加载-卸载路径下铁α-ε相变动力学特性研究.  , 2021, 70(16): 166201. doi: 10.7498/aps.70.20210089
    [3] 江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗. 局部塑性变形下铁基金属玻璃的致密化和非均匀性增强.  , 2021, (): . doi: 10.7498/aps.70.20211304
    [4] 潘昊, 王升涛, 吴子辉, 胡晓棉. 孪晶对Be材料冲击加-卸载动力学影响的数值模拟研究.  , 2018, 67(16): 164601. doi: 10.7498/aps.67.20180451
    [5] 于海滨, 杨群. 超稳定玻璃.  , 2017, 66(17): 176108. doi: 10.7498/aps.66.176108
    [6] 王军强, 欧阳酥. 金属玻璃流变的扩展弹性模型.  , 2017, 66(17): 176102. doi: 10.7498/aps.66.176102
    [7] 胡丽娜, 赵茜, 张春芝. 金属玻璃液体中的强脆转变现象.  , 2017, 66(17): 176403. doi: 10.7498/aps.66.176403
    [8] 马将, 杨灿, 龚峰, 伍晓宇, 梁雄. 金属玻璃的热塑性成型.  , 2017, 66(17): 176404. doi: 10.7498/aps.66.176404
    [9] 袁晨晨. 金属玻璃的键态特征与塑性起源.  , 2017, 66(17): 176402. doi: 10.7498/aps.66.176402
    [10] 吴飞飞, 余鹏, 卞西磊, 谭军, 王建国, 王刚. 金属玻璃的断裂机理与其断裂韧度的关系.  , 2014, 63(5): 058101. doi: 10.7498/aps.63.058101
    [11] 王文鹏, 刘福生, 张宁超. 冲击加载下液态水的结构相变.  , 2014, 63(12): 126201. doi: 10.7498/aps.63.126201
    [12] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究.  , 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [13] 韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯. 源于团簇-共振模型的理想金属玻璃电子化学势均衡.  , 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [14] 陈艳, 蒋敏强, 戴兰宏. 金属玻璃温度依赖的拉压屈服不对称研究.  , 2012, 61(3): 036201. doi: 10.7498/aps.61.036201
    [15] 莫润阳, 林书玉, 王成会. H-22细胞声孔效应的应力阈值.  , 2011, 60(11): 114306. doi: 10.7498/aps.60.114306
    [16] 邓小良, 祝文军, 宋振飞, 贺红亮, 经福谦. 冲击加载下孔洞贯通的微观机理研究.  , 2009, 58(7): 4772-4778. doi: 10.7498/aps.58.4772
    [17] 陈 军, 徐 云, 陈栋泉, 孙锦山. 冲击作用下纳米孔洞动力学行为的多尺度方法模拟研究.  , 2008, 57(10): 6437-6443. doi: 10.7498/aps.57.6437
    [18] 张永康, 孔德军, 冯爱新, 鲁金忠, 张雷洪, 葛 涛. 涂层界面结合强度检测研究(Ⅰ):涂层结合界面应力的理论分析.  , 2006, 55(6): 2897-2900. doi: 10.7498/aps.55.2897
    [19] 邓小良, 祝文军, 贺红亮, 伍登学, 经福谦. 〈111〉晶向冲击加载下单晶铜中纳米孔洞增长的早期动力学行为.  , 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
    [20] 佟存柱, 郑萍, 白海洋, 陈兆甲, 雒建林, 张杰, 林德华, 汪卫华. 块体金属玻璃Zr_(48)Nb_8Cu_(12)Fe_8Be_(24)低温电阻的研究.  , 2002, 51(7): 1559-1563. doi: 10.7498/aps.51.1559
计量
  • 文章访问数:  7159
  • PDF下载量:  563
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-11
  • 修回日期:  2012-04-12

/

返回文章
返回
Baidu
map