-
为了从电子层面揭示钛铝合金高温氧化的物理本质,采用递归法与Castep相结合的方式, 计算了原子埋置能、亲和能、结合能等电子结构参数,探索合金氧化机理.研究表明: 氧在钛中有较大固溶度,氧原子可以在钛表面的基体内聚集,逐步向深层扩散. 氧与钛具备较强的亲和力,能形成钛的氧化膜.钛基体中铝原子间具有相互吸引力, 能形成铝的原子团簇.铝原子团簇中的钛原子间相互排斥与铝形成化合物. 铝、钛与氧的亲和能相近,不易发生铝的优先氧化,而是同时生成钛的氧化物和铝的氧化物. Al2O3比TiO2的结合能略低,因而更加稳定,铝在TiO2中有较大的固溶度, 能替换其中的钛形成更稳定的Al2O3氧化物.In order to reveal the physical nature of high temperature oxidation of titanium-aluminous alloy from the electronic level, the atom embedded energy, affinity energy, binding energy and other electronic structure parameters are calculated by using recursive method combining with Castep, and the alloy oxidation mechanism is explored. The results show that there is a larger oxygen solubility in titanium and oxygen atoms can aggregate into titanium matrix near surface, and gradually spread into the deep matrix. Oxygen and titanium have a strong affinity to form a titanium oxide film. Aluminum can form clusters with mutual attraction between aluminum atoms in titanium matrix. Titanium atoms in aluminum clusters are mutually repulsive and form chemical compounds with aluminum atoms. Because of the closing affinity energy between aluminum and titanium with oxygen, the preferential oxidation of aluminum cannot occur, but titanium oxide and aluminum oxide form. The binding energy of Al2O3 is slightly lower than that of TiO2, therefore Al2O3 is more stable. Aluminum in TiO2 has a greater solubility, which can replace titanium to form more stable oxide Al2O3.
[1] Kim Y W, Dimiduk D M 1991 JOM 43 40
[2] Dimiduk D M 1999 Mater Sci. Eng. A 263 281
[3] Zhang L, Xiao W H, Jiang H R 2006 J. of Chin. of Nonferr. Metals 16 899 (in Chinese) [张亮, 肖伟豪, 姜惠仁 2006 中国有色金属学报 16 899]
[4] Striisnijder M F 1997 Surf. Eng. 13 323
[5] Rakowski J M 1995 Scripta Metallur. Mater. 33 997
[6] Liu G L 2010 Acta Phys. Sin . 59 494 (in Chinese) [刘贵立 2010 59 494]
[7] Marlo M, Milman V 2000 Phys. Rev. B 62 2899
[8] Vanderbilt D 1990 Phys. Rev. B 41 7892
[9] Hammer B, Hansen L B, Norkov J K 1999 Phys. Rev. B 59 7413
[10] Franscis G P, Payne M C 1990 J. Phys.: Condens Matter. 2 4395
[11] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[12] Haydock R 1980 Solid State Physics 35 (New York: Academic Press) p216
[13] Slater J C, Koster G F 1954 Phys. Rev. 94 14986
[14] Harrison W A 1980 Electronic Structure and the Properties of Solids (San Francisco: Freeman) p551
[15] Kong F T 2003 Rare Metal Mater. Eng. 32 81 (in Chinese) [孔凡涛 2003 稀有金属材料与工程 32 81]
-
[1] Kim Y W, Dimiduk D M 1991 JOM 43 40
[2] Dimiduk D M 1999 Mater Sci. Eng. A 263 281
[3] Zhang L, Xiao W H, Jiang H R 2006 J. of Chin. of Nonferr. Metals 16 899 (in Chinese) [张亮, 肖伟豪, 姜惠仁 2006 中国有色金属学报 16 899]
[4] Striisnijder M F 1997 Surf. Eng. 13 323
[5] Rakowski J M 1995 Scripta Metallur. Mater. 33 997
[6] Liu G L 2010 Acta Phys. Sin . 59 494 (in Chinese) [刘贵立 2010 59 494]
[7] Marlo M, Milman V 2000 Phys. Rev. B 62 2899
[8] Vanderbilt D 1990 Phys. Rev. B 41 7892
[9] Hammer B, Hansen L B, Norkov J K 1999 Phys. Rev. B 59 7413
[10] Franscis G P, Payne M C 1990 J. Phys.: Condens Matter. 2 4395
[11] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[12] Haydock R 1980 Solid State Physics 35 (New York: Academic Press) p216
[13] Slater J C, Koster G F 1954 Phys. Rev. 94 14986
[14] Harrison W A 1980 Electronic Structure and the Properties of Solids (San Francisco: Freeman) p551
[15] Kong F T 2003 Rare Metal Mater. Eng. 32 81 (in Chinese) [孔凡涛 2003 稀有金属材料与工程 32 81]
计量
- 文章访问数: 8598
- PDF下载量: 638
- 被引次数: 0