搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管内Ni纳米线的螺旋度与热稳定性研究

杜玉光 张凯旺 彭向阳 金福报 钟建新

引用本文:
Citation:

碳纳米管内Ni纳米线的螺旋度与热稳定性研究

杜玉光, 张凯旺, 彭向阳, 金福报, 钟建新

Helicities and thermostabilities of Ni nanowires in the carbon nanotubes

Du Yu-Guang, Zhang Kai-Wang, Peng Xiang-Yang, Jin Fu-Bao, Zhong Jian-Xin
PDF
导出引用
  • 本文采用分子动力学模拟方法研究了扶手型碳纳米管包裹Ni纳米线的复合结构, 主要讨论内部Ni纳米线的螺旋度和热稳定性.结果表明, Ni纳米线为多壳层螺旋结构, 各壳层是由多条Ni原子链螺旋而成,不同层的螺旋度不同,内层的螺旋度明显大于外层. 当每层的Ni原子链条数为3的整数倍时,其螺旋度最大. Ni纳米线的螺旋度与碳纳米管的管径相关,各层螺旋度的大小随管径的增加有明显的周期性变化. 碳纳米管对Ni纳米线有很好的保护作用,即使是高温对Ni纳米线的结构及螺旋度也影响很小.
    Molecular dynamics calculations are performed to study the structures of armchair carbon nanotubes (CNTs) encapsulating Ni nanowires and their helicities and thermal stabilities are discussed. It is found that Ni nanowires are of multiple helical tubular structure and each layer is composed of several Ni atom chains. Different layers of Ni nanowires have different helicities and the helicities of Ni nanowires in the inner layer are greater than those of the outer one. What is more, the helicity will be greatest when the number of the Ni atom chains is an integer multiple of three. As the increases of the diameters of the CNTs, the helicities of Ni nanowires change periodically. The structure and helicity only have tiny variations even at high temperature as the CNTs can protect the Ni nanowire.
    • 基金项目: 国家自然科学基金(批准号: 10974166, 10774127)和湖南省教育厅重点项目(批准号: 09A094, 10A118)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974166, 10774127), and the Research Foundation of Education Bureau of Hunan Province, China (Grant Nos. 09A094, 10A118).
    [1]

    Ajayan P M, Iijima S 1993 Nature 361 333

    [2]

    Tapia A, Aguilera L, Cab C, Medina-Esquivel R A, Coss R, Canto G 2010 Carbon 48 4057

    [3]

    Sun F W, Li H, Liew K M 2010 Carbon 48 1586

    [4]

    Guo S H, Zhu B E, Ou X D, Pan Z Y, Wang Y X 2010 Carbon 48 4129

    [5]

    Ruoff R S, Lorents D C, Chan B 1993 Science 259 346

    [6]

    Guerret C, Bouar L Y, Loseau A 1994 Nature 372 761

    [7]

    Grobert N, Hsu W K, Zhu Y Q, Hare J P, Kroto H W, Terrones M, Terrones H, Redlich P, Ruhle M, Escudero R, Morales F 1999 Appl. Phys. Lett. 75 3363

    [8]

    Tsang S C, Chen Y K, Harris P J F 1994 Nature 372 159

    [9]

    Arcidiacono S, Walther J H, Poulikakos D, Passerone D, Koumoutsakos P 2005 Phys. Rev. Lett. 94 105502

    [10]

    Xiao Y, Zhu B E, Guo S H, Wang Y X, Pan Z Y 2009 Nucl. Instrum. Methods Phys. Res. B 267 3067

    [11]

    Bao J C, Tie C Y, Xu Z 2002 Adv. Mater. 14 1483

    [12]

    Liang C H, Meng C W, zhang L D 2000 J. Cryst. Growth 218 136

    [13]

    Gülseren O, Ercolessi F, Tosatti E 1998 Phys. Rev. Lett. 80 3775

    [14]

    Ge Y, Fa w, Zhou J, Dong J M 2010 Phys. Lett. A 374 3258

    [15]

    Kondo Y, Takayanagi K 2000 Science 289 606

    [16]

    Zhang K W, Meng L J, Liu W L, Tang Y, Zhong X J 2008 Acta Phys. Sin. 57 4347 (in Chinese) [张凯旺, 孟利军, 李俊, 刘文亮, 唐翌, 钟建新 2008 57 4347]

    [17]

    Kosmider M, Dendzik Z, Pallucha S 2004 J. Molecu. Struct. 704 197

    [18]

    Xie Y, Zhang J M 2011 Chin. Phys. B 20 127302

    [19]

    Li H Y, Ren X B, Guo X Y 2007 Chem. Phys. Lett. 437 108

    [20]

    Jin W, Hui N J, Qu Sh X 2011 Acta Phys. Sin. 60 016301 (in Chinese) [金蔚, 惠宁菊, 屈世显 2011 60 016301]

    [21]

    Massobrio C, Pontilis V, Martin G 1990 Phys. Rev. B 41 10486

    [22]

    Zhang K W, Stocks G M, Zhong J X 2007 Nanotechnology 18 285703

    [23]

    Zhang K W 2008 Natur Sci. J. Xiangtan Univ. 30 43 (in Chinese) [张凯旺 2008 湘潭大学自然科学学报 30 43]

    [24]

    Tersoff J 1988 Phys. Rev. Lett. 61 2879

    [25]

    Tersoff J, Ruoff R S 1994 Phys. Rev. Lett. 73 676

    [26]

    Zhang K W, Zhong J X 2008 Acta Phys. Sin. 57 3679 (in Chinese) [张凯旺, 钟建新 2008 57 3679]

    [27]

    Antonis N A, Madhu M, George F 2000 Phys. Rev. Lett. 85 3193

    [28]

    Amara H, Bichara C, Ducastelle F 2006 Phys. Rev. B 73 113404

    [29]

    Song X H, Gan Z Y 2009 J. Comput. Phys. 106 104308

    [30]

    Banerjee S, Puri I K 2008 Nanotechnology 19 155702

    [31]

    Li S L, Zhang J M 2011 Acta Phys. Sin. 7 078801 (in Chinese) [李姝丽, 张建民 2011 7 078801]

    [32]

    Guo Y F, Guo W L 2006 Nanotechnology 17 4726

    [33]

    Arcidiacono S, Walther J H, Poulikakos D, Passerone D, Koumoutakos P 2005 Phys. Rev. Lett. 94 105502

    [34]

    Ge H, Fa W, Zhou J, Dong J M 2010 Phys. Lett. A 374 3258

    [35]

    Honeycutt J D, Anderson H C 1987 J. Phys. Chem. 91 4950

    [36]

    Zhou G R, Gao Q M 2007 Acta Phys. Sin. 56 1499 (in Chinese) [周国荣, 高秋明 2007 56 1499]

  • [1]

    Ajayan P M, Iijima S 1993 Nature 361 333

    [2]

    Tapia A, Aguilera L, Cab C, Medina-Esquivel R A, Coss R, Canto G 2010 Carbon 48 4057

    [3]

    Sun F W, Li H, Liew K M 2010 Carbon 48 1586

    [4]

    Guo S H, Zhu B E, Ou X D, Pan Z Y, Wang Y X 2010 Carbon 48 4129

    [5]

    Ruoff R S, Lorents D C, Chan B 1993 Science 259 346

    [6]

    Guerret C, Bouar L Y, Loseau A 1994 Nature 372 761

    [7]

    Grobert N, Hsu W K, Zhu Y Q, Hare J P, Kroto H W, Terrones M, Terrones H, Redlich P, Ruhle M, Escudero R, Morales F 1999 Appl. Phys. Lett. 75 3363

    [8]

    Tsang S C, Chen Y K, Harris P J F 1994 Nature 372 159

    [9]

    Arcidiacono S, Walther J H, Poulikakos D, Passerone D, Koumoutsakos P 2005 Phys. Rev. Lett. 94 105502

    [10]

    Xiao Y, Zhu B E, Guo S H, Wang Y X, Pan Z Y 2009 Nucl. Instrum. Methods Phys. Res. B 267 3067

    [11]

    Bao J C, Tie C Y, Xu Z 2002 Adv. Mater. 14 1483

    [12]

    Liang C H, Meng C W, zhang L D 2000 J. Cryst. Growth 218 136

    [13]

    Gülseren O, Ercolessi F, Tosatti E 1998 Phys. Rev. Lett. 80 3775

    [14]

    Ge Y, Fa w, Zhou J, Dong J M 2010 Phys. Lett. A 374 3258

    [15]

    Kondo Y, Takayanagi K 2000 Science 289 606

    [16]

    Zhang K W, Meng L J, Liu W L, Tang Y, Zhong X J 2008 Acta Phys. Sin. 57 4347 (in Chinese) [张凯旺, 孟利军, 李俊, 刘文亮, 唐翌, 钟建新 2008 57 4347]

    [17]

    Kosmider M, Dendzik Z, Pallucha S 2004 J. Molecu. Struct. 704 197

    [18]

    Xie Y, Zhang J M 2011 Chin. Phys. B 20 127302

    [19]

    Li H Y, Ren X B, Guo X Y 2007 Chem. Phys. Lett. 437 108

    [20]

    Jin W, Hui N J, Qu Sh X 2011 Acta Phys. Sin. 60 016301 (in Chinese) [金蔚, 惠宁菊, 屈世显 2011 60 016301]

    [21]

    Massobrio C, Pontilis V, Martin G 1990 Phys. Rev. B 41 10486

    [22]

    Zhang K W, Stocks G M, Zhong J X 2007 Nanotechnology 18 285703

    [23]

    Zhang K W 2008 Natur Sci. J. Xiangtan Univ. 30 43 (in Chinese) [张凯旺 2008 湘潭大学自然科学学报 30 43]

    [24]

    Tersoff J 1988 Phys. Rev. Lett. 61 2879

    [25]

    Tersoff J, Ruoff R S 1994 Phys. Rev. Lett. 73 676

    [26]

    Zhang K W, Zhong J X 2008 Acta Phys. Sin. 57 3679 (in Chinese) [张凯旺, 钟建新 2008 57 3679]

    [27]

    Antonis N A, Madhu M, George F 2000 Phys. Rev. Lett. 85 3193

    [28]

    Amara H, Bichara C, Ducastelle F 2006 Phys. Rev. B 73 113404

    [29]

    Song X H, Gan Z Y 2009 J. Comput. Phys. 106 104308

    [30]

    Banerjee S, Puri I K 2008 Nanotechnology 19 155702

    [31]

    Li S L, Zhang J M 2011 Acta Phys. Sin. 7 078801 (in Chinese) [李姝丽, 张建民 2011 7 078801]

    [32]

    Guo Y F, Guo W L 2006 Nanotechnology 17 4726

    [33]

    Arcidiacono S, Walther J H, Poulikakos D, Passerone D, Koumoutakos P 2005 Phys. Rev. Lett. 94 105502

    [34]

    Ge H, Fa W, Zhou J, Dong J M 2010 Phys. Lett. A 374 3258

    [35]

    Honeycutt J D, Anderson H C 1987 J. Phys. Chem. 91 4950

    [36]

    Zhou G R, Gao Q M 2007 Acta Phys. Sin. 56 1499 (in Chinese) [周国荣, 高秋明 2007 56 1499]

  • [1] 刘子怡, 褚福强, 魏俊俊, 冯妍卉. 金刚石/碳纳米管异质界面热导及声子热输运特性.  , 2024, 73(13): 138102. doi: 10.7498/aps.73.20240323
    [2] 秦成龙, 罗祥燕, 谢泉, 吴乔丹. 碳纳米管和碳化硅纳米管热导率的分子动力学研究.  , 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [3] 杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁. 多壁碳纳米管与金属表面间接触行为的分子动力学模拟.  , 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [4] 李瑞, 密俊霞. 界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟.  , 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [5] 李阳, 宋永顺, 黎明, 周昕. 碳纳米管中水孤立子扩散现象的模拟研究.  , 2016, 65(14): 140202. doi: 10.7498/aps.65.140202
    [6] 曾永辉, 江五贵, Qin Qing-Hua. 螺旋上升对自激发锯齿型双壁碳纳米管振荡行为的影响.  , 2016, 65(14): 148802. doi: 10.7498/aps.65.148802
    [7] 韩典荣, 王璐, 罗成林, 朱兴凤, 戴亚飞. (n, n)-(2n, 0)碳纳米管异质结的扭转力学特性.  , 2015, 64(10): 106102. doi: 10.7498/aps.64.106102
    [8] 曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞. 通量可控的双壁碳纳米管水分子泵.  , 2015, 64(11): 116101. doi: 10.7498/aps.64.116101
    [9] 杨成兵, 解辉, 刘朝. 锂离子进入碳纳米管端口速度的分子动力学模拟.  , 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [10] 焦学敬, 欧阳方平, 彭盛霖, 李建平, 段吉安, 胡友旺. 碳纳米管对接成异质结器件的计算模拟.  , 2013, 62(10): 106101. doi: 10.7498/aps.62.106101
    [11] 徐葵, 王青松, 谭兵, 陈明璇, 缪灵, 江建军. 形变碳纳米管选择通过性的分子动力学研究.  , 2012, 61(9): 096101. doi: 10.7498/aps.61.096101
    [12] 张忠强, 丁建宁, 刘珍, Y. Xue, 程广贵, 凌智勇. 碳纳米管-聚乙烯复合材料界面力学特性分析.  , 2012, 61(12): 126202. doi: 10.7498/aps.61.126202
    [13] 左学云, 李中秋, 王伟, 孟利军, 张凯旺, 钟建新. 碳纳米管熔接金电极的分子动力学模拟.  , 2011, 60(6): 066103. doi: 10.7498/aps.60.066103
    [14] 孟利军, 肖化平, 唐超, 张凯旺, 钟建新. 碳纳米管-硅纳米线复合结构的形成和热稳定性.  , 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [15] 张忠强, 张洪武, 王 磊, 郑勇刚, 王晋宝. 液体水银在碳纳米管中传输的压力控制模型.  , 2008, 57(2): 1019-1024. doi: 10.7498/aps.57.1019
    [16] 辛 浩, 韩 强, 姚小虎. 单、双原子空位缺陷对扶手椅型单层碳纳米管屈曲性能的不同影响.  , 2008, 57(7): 4391-4396. doi: 10.7498/aps.57.4391
    [17] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟.  , 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [18] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟.  , 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [19] 保文星, 朱长纯. 碳纳米管热传导的分子动力学模拟研究.  , 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
    [20] 保文星, 朱长纯, 崔万照. 基于克隆选择的混合遗传算法在碳纳米管结构优化中的研究.  , 2005, 54(11): 5281-5287. doi: 10.7498/aps.54.5281
计量
  • 文章访问数:  6642
  • PDF下载量:  467
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-29
  • 修回日期:  2012-02-29
  • 刊出日期:  2012-09-05

/

返回文章
返回
Baidu
map