-
采用蒙特-卡罗(Monte Carlo)方法, 模拟了激光烧蚀粒子输运动力学过程, 在环境气体压强为100 Pa的情况下, 研究了环境气体种类(He, Ne, Ar和假想气体等)对烧蚀粒子速度劈裂的影响. 研究结果表明, 在四种环境气体中传输的烧蚀粒子均出现了速度劈裂现象, 形成速度劈裂所需时间按He, Ne, 假想气体和Ar的次序减小. 还研究了环境气体分子的质量和半径对烧蚀粒子速度劈裂的影响, 形成速度劈裂所需时间随环境气体分子半径(或质量)增大而减小. 在假想气体中, 两速度峰强度相等时的强度最小. 结合欠阻尼振荡模型和惯性流体模型, 对劈裂的形成时间进行了解释. 所得结论可为进一步定量研究纳米晶粒生长机理提供基础.The transport dynamics of the ablated particles is simulated via Monte Carlo simulation. The influences of ambient gases (He, Ne, and Ar dummy gas) on velocity splitting of the ablated particles under 100 Pa are investigated. The results show that the velocity splitting appears in four types of gases. The formation times of velocity splitting of the ablated particles decrease in sequence of He, Ne, dummy gas and Ar. The influences of the mass and radius of ambient gas molecule on the velocity splitting are also investigated. The formation time of the velocity splitting decreases with mass/radius of ambient gas molecule increasing. The intensity is the smallest when the two velocity peak intensities are equal. The formation time of velocity splitting is explained by the underdamping oscillation model and the inertia fluid model. These results give a good foundation for the further study of the Si nanoparticle growth.
-
Keywords:
- Monte Carlo simulation /
- ablated particles /
- velocity splitting /
- gas kinds
[1] Lownds D H, Geohegan D B, Puretzky A A, Norton D P, Rouleau C M 1996 Science 273 898
[2] Phark S H, Chang Y J, Noh T W 2009 Phys. Rev. B 80 035426
[3] Wang Y L, Chen C, Ding X C, Chu L Z, Deng Z C, Liang W H, Fu G S 2011 Laser Part. Beams 29 105
[4] Zhao S Q, Yang L M, Liu W W, Zhao K, Zhou Y L, Zhou Q L 2010 Chin. Phys. B 19 087204
[5] Ding X C, Fu G S, Liang W H, Chu L Z, Deng Z C, Wang Y L 2010 Acta Phys. Sin. 59 3331 (in Chines) [丁学成, 傅广生, 梁伟华, 褚立志, 邓泽超, 王英龙 2010 59 3331]
[6] Gareth O W, Sebastian F, Gerard O 2009 Appl. Phys. Lett. 94 101503
[7] Harilal S S, Shay B O, Tao Y, Tillack M S 2006 J. Appl. Phys. 99 083303
[8] Wood R F, Chen K R, Leboeuf J N, Puretzky A A, Geohegan D B 1997 Phys. Rew. Lett. 79 1571
[9] Ding X C, Wang Y L, Chu L Z, Deng Z C, Liang W H, Galalaldeen I I A, Fu G S 2011 Europhys. Lett. 96 55002
[10] Leonid V Z, Barbara J G 1997 Appl. Phys. Lett. 71 551
[11] Han M, Gong Y C, Zhou J F, Yin C R, Song F Q, Muto N, Takiya T, Iwata Y 2002 Phys. Lett. A 302 182
[12] Yoshida T, Takeyama S, Yshida Y, Katsuhika M 1996 Appl. Phys. Lett. 68 1772
[13] Fu G S, Wang Y L, Chu L Z, Zhou Y, Yu W, Han L, Peng Y C 2005 Europhys. Lett. 69 758
-
[1] Lownds D H, Geohegan D B, Puretzky A A, Norton D P, Rouleau C M 1996 Science 273 898
[2] Phark S H, Chang Y J, Noh T W 2009 Phys. Rev. B 80 035426
[3] Wang Y L, Chen C, Ding X C, Chu L Z, Deng Z C, Liang W H, Fu G S 2011 Laser Part. Beams 29 105
[4] Zhao S Q, Yang L M, Liu W W, Zhao K, Zhou Y L, Zhou Q L 2010 Chin. Phys. B 19 087204
[5] Ding X C, Fu G S, Liang W H, Chu L Z, Deng Z C, Wang Y L 2010 Acta Phys. Sin. 59 3331 (in Chines) [丁学成, 傅广生, 梁伟华, 褚立志, 邓泽超, 王英龙 2010 59 3331]
[6] Gareth O W, Sebastian F, Gerard O 2009 Appl. Phys. Lett. 94 101503
[7] Harilal S S, Shay B O, Tao Y, Tillack M S 2006 J. Appl. Phys. 99 083303
[8] Wood R F, Chen K R, Leboeuf J N, Puretzky A A, Geohegan D B 1997 Phys. Rew. Lett. 79 1571
[9] Ding X C, Wang Y L, Chu L Z, Deng Z C, Liang W H, Galalaldeen I I A, Fu G S 2011 Europhys. Lett. 96 55002
[10] Leonid V Z, Barbara J G 1997 Appl. Phys. Lett. 71 551
[11] Han M, Gong Y C, Zhou J F, Yin C R, Song F Q, Muto N, Takiya T, Iwata Y 2002 Phys. Lett. A 302 182
[12] Yoshida T, Takeyama S, Yshida Y, Katsuhika M 1996 Appl. Phys. Lett. 68 1772
[13] Fu G S, Wang Y L, Chu L Z, Zhou Y, Yu W, Han L, Peng Y C 2005 Europhys. Lett. 69 758
计量
- 文章访问数: 6468
- PDF下载量: 377
- 被引次数: 0