-
由于电子的多体关联和量子相干性的联合作用, 双量子点Aharonov-Bohm 干涉系统中的电子输运过程隐含 内在的快、慢两条通道, 且通道之间的有效耦合强度可以通过磁通调控. 但是, 这一非平庸的内在性质, 在通常的稳态输运电流中不能得以反映. 本文利用在研究非平衡动力学相变中所发展的大偏离方法, 对该输运系统中的电子动力学路径做大偏离统计分析. 结果显示, 以上内在性质将诱导出路径空间中清晰的动力学相变行为.
-
关键词:
- 量子点 /
- Aharonov-Bohm干涉 /
- 大偏离分析 /
- 动力学相变
The Coulomb correlation and quantum coherence in a double-dot Aharonov-Bohm interferometer can result in two distinct transport channels: a fast channel and a slow one, while their coupling is tunable by changing the magnetic flux passing through an interference loop. However, these effects cannot be manifested by the conventional transport current. In this work, employing the large-deviation method which was originally developed in the nonequilibrium statistical mechanics, we perform a large-deviation analysis for the transport through this double-dot interferometer system and reveal a clear dynamical phase transition behavior.-
Keywords:
- quantum dot /
- Aharonov-Bohm interference /
- large-deviation analysis /
- dynamical phase transition
[1] Gustavsson S, Leturcq R, Simovic B, Schleser R, Ihn T, Studerus P, Ensslin K 2006 Phys. Rev. Lett. 96 076605
[2] Loss D, Sukhorukov E V 2000 Phys. Rev. Lett. 84 1035
[3] Sukhorukov E V, Burkard G, Loss D 2001 Phys. Rev. B 63 125315
[4] König J, Gefen Y 2001 Phys. Rev. Lett. 86 3855
[5] Sigrist M, Ihn T, Ensslin K, Loss D, Reinwald M, Wegscheider W 2006 Phys. Rev. Lett. 96 036804
[6] Holleitner A W, Decker C R, Qin H, Eberl K, Blick R H 2001 Phys. Rev. Lett. 87 256802
[7] Holleitner A W, Blick R H, Huttel A K, Eberl K, Kotthaus J P 2002 Science 297 70
[8] Li F, Li X Q, Zhang W M, Gurvitz S A 2009 Europhys. Lett. 88 37001
[9] Li F, Jiao H J, Luo J Y, Wang H, Li X Q 2009 Physica E 41 521
[10] Li F, Jiao H J, Luo J Y, Li X Q, Gurvitz S A 2009 Physica E 41 1707
[11] Urban D, König J 2009 Phys. Rev. B 79 165319
[12] Li J, Liu Y, Ping J, Li S S, Li X Q, Yan Y J 2011 Phys. Rev. B 84 115319
[13] Eckmann J P, Ruelle D 1985 Rev. Mod. Phys. 57 617
[14] Touchette H 2009 Phys. Rep. 478 1
[15] Garrahan J P, Jack R L, Lecomte V, Pitard E, Duijvendijk K, Wijland F 2007 Phys. Rev. Lett. 98 195702
[16] Hedges L O, Jack R L ,Garrahan J P, Chandler D 2009 Science 323 1309
[17] Garrahan J P, Lesanovsky I 2010 Phys. Rev. Lett. 104 160601
[18] Yan Y J 1998 Phys. Rev. A 58 2721
-
[1] Gustavsson S, Leturcq R, Simovic B, Schleser R, Ihn T, Studerus P, Ensslin K 2006 Phys. Rev. Lett. 96 076605
[2] Loss D, Sukhorukov E V 2000 Phys. Rev. Lett. 84 1035
[3] Sukhorukov E V, Burkard G, Loss D 2001 Phys. Rev. B 63 125315
[4] König J, Gefen Y 2001 Phys. Rev. Lett. 86 3855
[5] Sigrist M, Ihn T, Ensslin K, Loss D, Reinwald M, Wegscheider W 2006 Phys. Rev. Lett. 96 036804
[6] Holleitner A W, Decker C R, Qin H, Eberl K, Blick R H 2001 Phys. Rev. Lett. 87 256802
[7] Holleitner A W, Blick R H, Huttel A K, Eberl K, Kotthaus J P 2002 Science 297 70
[8] Li F, Li X Q, Zhang W M, Gurvitz S A 2009 Europhys. Lett. 88 37001
[9] Li F, Jiao H J, Luo J Y, Wang H, Li X Q 2009 Physica E 41 521
[10] Li F, Jiao H J, Luo J Y, Li X Q, Gurvitz S A 2009 Physica E 41 1707
[11] Urban D, König J 2009 Phys. Rev. B 79 165319
[12] Li J, Liu Y, Ping J, Li S S, Li X Q, Yan Y J 2011 Phys. Rev. B 84 115319
[13] Eckmann J P, Ruelle D 1985 Rev. Mod. Phys. 57 617
[14] Touchette H 2009 Phys. Rep. 478 1
[15] Garrahan J P, Jack R L, Lecomte V, Pitard E, Duijvendijk K, Wijland F 2007 Phys. Rev. Lett. 98 195702
[16] Hedges L O, Jack R L ,Garrahan J P, Chandler D 2009 Science 323 1309
[17] Garrahan J P, Lesanovsky I 2010 Phys. Rev. Lett. 104 160601
[18] Yan Y J 1998 Phys. Rev. A 58 2721
计量
- 文章访问数: 7187
- PDF下载量: 435
- 被引次数: 0