搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

(InAs)1/(GaSb)1超晶格原子链的第一原理研究

孙伟峰

引用本文:
Citation:

(InAs)1/(GaSb)1超晶格原子链的第一原理研究

孙伟峰

First-principles study of (InAs)1/(GaSb)1 superlattice atomic chains

Sun Wei-Feng
PDF
导出引用
  • 利用第一原理平面波赝势法, 对(InAs)1/(GaSb)1超晶格原子链的原子结构、力学特性、电子能带结构、声子结构和光学特性进行研究, 并结合密度泛函理论数值原子轨道赝势法和非平衡格林函数法计算量子输运特性. 与二维层结构的(InAs)1/(GaSb)1超晶格相比, (InAs)1/(GaSb)1超晶格原子链的能带结构有明显不同, 在某些情况下表现为金属能带特性. 对理想条件下(InAs)1/(GaSb)1 超晶格原子链的力学强度计算表明, 该结构可承受的应变高达 =0.19. 通过对声子结构的完整布里渊区分析, 研究了(InAs)1/(GaSb)1超晶格原子链的结构稳定性. 对两端接触电极为Al纳米线的InAs/GaSb超晶格原子链的电子输运特性计算表明, 电导随链长和应变的改变而发生非单调变化.光吸收谱的计算结果表现出在红外波段具有陡峭吸收边, 截止波长随超晶格原子链的结构而变化.预计InAs/GaSb超晶格原子链可应用于红外光电子纳米器件, 通过改变超晶格原子链的结构来调节光电响应波段.
    The atomic structure, the mechanical properties, the electronic band structure, and the phonon structure of (InAs)1/(GaSb)1 superlattice atomic chain are investigated by first-principles pseudopotential plane wave method, and the quantum transport properties are also calculated by the density functional theory numerical atomic orbit pseudopotential method in combination with nonequilibrium Green's function formalism. Compared with two-dimensional layer structural (InAs)1/(GaSb)1 superlattice, the (InAs)1/(GaSb)1 superlattice atomic chains have obviously different band structures, and represent metal energy band characteristics in certain conditions. The calculated mechanical strength of (InAs)1/(GaSb)1 superlattice atomic chains indicates that such structures can sustain the strain as high as =0.19. The structural stability of (InAs)1/(GaSb)1 superlattice atomic chains is investigated by full Brillouin zone analysis for phonon structure. The electron transport calculations for (InAs)1/(GaSb)1 superlattice atomic chain segments in between Al electrodes show that the conductance exhibits nontrivial features as the chain length or strain is varied. The calculated optical absorption spectra represent precipitous cutoff absorptions in infrared regime, and the cutoff wavelength varies with chain structure. InAs/GaSb superlattice atomic chains are predicted to be applied to infrared optoelectronic nanodevices, modifying optoelectronic response wavelength range by changing the structures of superlattice atomic chains.
    • 基金项目: 国家自然科学基金(批准号: 50502014, 50972032)和国家高技术研究发展计划(批准号: 2009AA03Z407)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50502014, 50972032) and the National High Technology Research and Development Program of China (Grant No. 2009AA03Z407).
    [1]

    Bowler D R 2004 J. Phys. Condens. Matter 16 R721

    [2]

    Okano S, Shiraishi K, Oshiyama A 2004 Phys. Rev. B 69 045401

    [3]

    Senger R T, Dag S, Ciraci S 2004 Phys. Rev. Lett. 93 196807

    [4]

    Mehrez H, Ciraci S 1997 Phys. Rev. B 56 12632

    [5]

    Agrait N, Rubio G, Vieira S 1995 Phys. Rev. Lett. 74 3995

    [6]

    Bhunia S, Kawamura T, Watanabe Y, Fujikawa S, Tokushima K 2003 Appl. Phys. Lett. 83 3371

    [7]

    Zhang X T, Liu Z, Ip K M, Leung Y P, Li Q, Hark S K 2004 J. Appl. Phys. 95 5752

    [8]

    Nilius N, Wallis T M, Ho W 2002 Science 297 1853

    [9]

    Grinyaev S N, Kataev S G 1993 Physica B 191 317

    [10]

    Rubio G, AgraÍt N, Vieira S 1996 Phys. Rev. Lett. 76 2302

    [11]

    Stafford C A, Baeriswyl D, Burki J 1997 Phys. Rev. Lett. 79 2863

    [12]

    Ribeiro F J, Cohen M L 2003 Phys. Rev. B 68 035423

    [13]

    Zgirski M, Riikonen K P, Touboltsev V, Arutyunov K Y 2008 Phys. Rev. B 77 054508

    [14]

    Rodrigues V, Fuhrer T, Ugarte D 2000 Phys. Rev. Lett. 85 4124

    [15]

    Voit J 1995 Rep. Prog. Phys. 58 977

    [16]

    Kopietz P, Meden V, Schönhammer K 1997 Phys. Rev. B 56 7232

    [17]

    Bockrath M, Cobden D H, Lu J, Rinzler A G, Smalley R E, Balents L, McEuen P L 1999 Nature 397 598

    [18]

    Auslaender O M, Steinberg H, Yacoby A, Tserkovnyak Y, Halperin B I, Baldwin K W, Pfeiffer L N, West K W 2005 Science 308 88

    [19]

    Claessen R, Sing M, Schwingenschlögl U, Blaha P, Dressel M, Jacobsen C S 2002 Phys. Rev. Lett. 88 096402

    [20]

    Schäfer J, Sing M, Claessen R, Rotenberg E, Zhou X J, Thorne R E, Kevan S D 2003 Phys. Rev. Lett. 91 066401

    [21]

    Shaw M J, Corbin E A, Kitchin M R, Jaros M 2001 Microelectron J. 32 593

    [22]

    Brown G J, Szmulowicz F, Haugan H, Mahalingam K, Houston S 2005 Microelectron. J. 36 256

    [23]

    Rogalski A, Martyniuk P 2006 Infrared Phys. Technol. 48 39

    [24]

    Tavazza F, Levine L E, Chaka A M 2009 J. Appl. Phys. 106 043522

    [25]

    Mozos J L, Wan C C, Taraschi G, Wang J, Guo H 1997 Phys. Rev. B 56 R4351

    [26]

    Kresse G, Furthm黮ler J 1996 Phys. Rev. B 54 11169

    [27]

    Clarke L J, Štich I, Payne M C 1992 Comp. Phys. Comm. 72 14

    [28]

    Wu Z G, Cohen R E 2006 Phys. Rev. B 73 235116

    [29]

    Aryasetiawan F, Gunnarsson O 1998 Rep. Prog. Phys. 61 237

    [30]

    Eiguren A, Ambrosch-Draxl C, Echenique P M 2009 Phys. Rev. B 79 245103

    [31]

    Spataru C D, Ismail-Beigi S, Benedict L X, Louie S G 2004 Phys. Rev. Lett. 92 077402

    [32]

    Ullrich C A, Vignale G 2002 Phys. Rev. B 65 245102

    [33]

    Levine Z H, Allan D C 1989 Phys. Rev. Lett. 63 1719

    [34]

    Delley B 2002 Phys. Rev. B 66 155125

    [35]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [36]

    Baker J, Kessi A, Delley B 1996 J. Chem. Phys. 105 192

    [37]

    De Gironcoli S 1995 Phys. Rev. B 51 6773

    [38]

    Hartwigsen C, Goedecker S, Hutter J 1998 Phys. Rev. B 58 3641

    [39]

    Brandbyge M, Mozos J L, Ordej髇 P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [40]

    http//www.quantumwise.com/, Virtual NanoLab Tutorial, Version 2008.10, p54

    [41]

    Fröhlich H 1954 Proc. R. Soc. London Ser. A 223 296

    [42]

    Batra I P1990 Phys. Rev. B 42 9162

    [43]

    Sanchez-Portal D, Artacho E, Soler J M, Rubio A, Ordejon P 1999 Phys. Rev. B 59 12678

    [44]

    Abdurahman A, Shukla A, Dolg M 2002 Phys. Rev. B 65 115106

    [45]

    Lang N D, Avouris P H 2000 Phys. Rev. Lett. 84 358

  • [1]

    Bowler D R 2004 J. Phys. Condens. Matter 16 R721

    [2]

    Okano S, Shiraishi K, Oshiyama A 2004 Phys. Rev. B 69 045401

    [3]

    Senger R T, Dag S, Ciraci S 2004 Phys. Rev. Lett. 93 196807

    [4]

    Mehrez H, Ciraci S 1997 Phys. Rev. B 56 12632

    [5]

    Agrait N, Rubio G, Vieira S 1995 Phys. Rev. Lett. 74 3995

    [6]

    Bhunia S, Kawamura T, Watanabe Y, Fujikawa S, Tokushima K 2003 Appl. Phys. Lett. 83 3371

    [7]

    Zhang X T, Liu Z, Ip K M, Leung Y P, Li Q, Hark S K 2004 J. Appl. Phys. 95 5752

    [8]

    Nilius N, Wallis T M, Ho W 2002 Science 297 1853

    [9]

    Grinyaev S N, Kataev S G 1993 Physica B 191 317

    [10]

    Rubio G, AgraÍt N, Vieira S 1996 Phys. Rev. Lett. 76 2302

    [11]

    Stafford C A, Baeriswyl D, Burki J 1997 Phys. Rev. Lett. 79 2863

    [12]

    Ribeiro F J, Cohen M L 2003 Phys. Rev. B 68 035423

    [13]

    Zgirski M, Riikonen K P, Touboltsev V, Arutyunov K Y 2008 Phys. Rev. B 77 054508

    [14]

    Rodrigues V, Fuhrer T, Ugarte D 2000 Phys. Rev. Lett. 85 4124

    [15]

    Voit J 1995 Rep. Prog. Phys. 58 977

    [16]

    Kopietz P, Meden V, Schönhammer K 1997 Phys. Rev. B 56 7232

    [17]

    Bockrath M, Cobden D H, Lu J, Rinzler A G, Smalley R E, Balents L, McEuen P L 1999 Nature 397 598

    [18]

    Auslaender O M, Steinberg H, Yacoby A, Tserkovnyak Y, Halperin B I, Baldwin K W, Pfeiffer L N, West K W 2005 Science 308 88

    [19]

    Claessen R, Sing M, Schwingenschlögl U, Blaha P, Dressel M, Jacobsen C S 2002 Phys. Rev. Lett. 88 096402

    [20]

    Schäfer J, Sing M, Claessen R, Rotenberg E, Zhou X J, Thorne R E, Kevan S D 2003 Phys. Rev. Lett. 91 066401

    [21]

    Shaw M J, Corbin E A, Kitchin M R, Jaros M 2001 Microelectron J. 32 593

    [22]

    Brown G J, Szmulowicz F, Haugan H, Mahalingam K, Houston S 2005 Microelectron. J. 36 256

    [23]

    Rogalski A, Martyniuk P 2006 Infrared Phys. Technol. 48 39

    [24]

    Tavazza F, Levine L E, Chaka A M 2009 J. Appl. Phys. 106 043522

    [25]

    Mozos J L, Wan C C, Taraschi G, Wang J, Guo H 1997 Phys. Rev. B 56 R4351

    [26]

    Kresse G, Furthm黮ler J 1996 Phys. Rev. B 54 11169

    [27]

    Clarke L J, Štich I, Payne M C 1992 Comp. Phys. Comm. 72 14

    [28]

    Wu Z G, Cohen R E 2006 Phys. Rev. B 73 235116

    [29]

    Aryasetiawan F, Gunnarsson O 1998 Rep. Prog. Phys. 61 237

    [30]

    Eiguren A, Ambrosch-Draxl C, Echenique P M 2009 Phys. Rev. B 79 245103

    [31]

    Spataru C D, Ismail-Beigi S, Benedict L X, Louie S G 2004 Phys. Rev. Lett. 92 077402

    [32]

    Ullrich C A, Vignale G 2002 Phys. Rev. B 65 245102

    [33]

    Levine Z H, Allan D C 1989 Phys. Rev. Lett. 63 1719

    [34]

    Delley B 2002 Phys. Rev. B 66 155125

    [35]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [36]

    Baker J, Kessi A, Delley B 1996 J. Chem. Phys. 105 192

    [37]

    De Gironcoli S 1995 Phys. Rev. B 51 6773

    [38]

    Hartwigsen C, Goedecker S, Hutter J 1998 Phys. Rev. B 58 3641

    [39]

    Brandbyge M, Mozos J L, Ordej髇 P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [40]

    http//www.quantumwise.com/, Virtual NanoLab Tutorial, Version 2008.10, p54

    [41]

    Fröhlich H 1954 Proc. R. Soc. London Ser. A 223 296

    [42]

    Batra I P1990 Phys. Rev. B 42 9162

    [43]

    Sanchez-Portal D, Artacho E, Soler J M, Rubio A, Ordejon P 1999 Phys. Rev. B 59 12678

    [44]

    Abdurahman A, Shukla A, Dolg M 2002 Phys. Rev. B 65 115106

    [45]

    Lang N D, Avouris P H 2000 Phys. Rev. Lett. 84 358

  • [1] 丁锦廷, 胡沛佳, 郭爱敏. 线缺陷石墨烯纳米带的电输运研究.  , 2023, 72(15): 157301. doi: 10.7498/aps.72.20230502
    [2] 刘天, 李宗良, 张延惠, 蓝康. 耗散环境单量子点体系输运过程的量子速度极限研究.  , 2023, 72(4): 047301. doi: 10.7498/aps.72.20222159
    [3] 方静云, 孙庆丰. 石墨烯p-n结在磁场中的电输运热耗散.  , 2022, 71(12): 127203. doi: 10.7498/aps.71.20220029
    [4] 胡海涛, 郭爱敏. 双层硼烯纳米带的量子输运研究.  , 2022, 71(22): 227301. doi: 10.7498/aps.71.20221304
    [5] 闫婕, 魏苗苗, 邢燕霞. HgTe/CdTe量子阱中自旋拓扑态的退相干效应.  , 2019, 68(22): 227301. doi: 10.7498/aps.68.20191072
    [6] 吴歆宇, 韩伟华, 杨富华. 硅纳米结构晶体管中与杂质量子点相关的量子输运.  , 2019, 68(8): 087301. doi: 10.7498/aps.68.20190095
    [7] 闫瑞, 吴泽文, 谢稳泽, 李丹, 王音. 导线非共线的分子器件输运性质的第一性原理研究.  , 2018, 67(9): 097301. doi: 10.7498/aps.67.20172221
    [8] 柳福提, 张淑华, 程艳, 陈向荣, 程晓洪. (GaAs)n(n=1-4)原子链电子输运性质的理论计算.  , 2016, 65(10): 106201. doi: 10.7498/aps.65.106201
    [9] 张彩霞, 郭虹, 杨致, 骆游桦. 三明治结构Tan(B3N3H6)n+1 团簇的磁性和量子输运性质.  , 2012, 61(19): 193601. doi: 10.7498/aps.61.193601
    [10] 张国莲, 逯瑶, 蒋雷, 王喆, 张昌文, 王培吉. 第一原理研究Sn(O1-xNx)2材料的光电磁性质.  , 2012, 61(11): 117101. doi: 10.7498/aps.61.117101
    [11] 张振铎, 侯清玉, 李聪, 赵春旺. Nd高掺杂锐钛矿相TiO2电子结构和吸收光谱的第一原理研究.  , 2012, 61(11): 117102. doi: 10.7498/aps.61.117102
    [12] 孙伟峰, 郑晓霞. 第一原理研究界面弛豫对InAs/GaSb超晶格界面结构、能带结构和光学性质的影响.  , 2012, 61(11): 117301. doi: 10.7498/aps.61.117301
    [13] 孙伟峰, 郑晓霞. (InAs)1/(GaSb)1超晶格纳米线第一原理研究.  , 2012, 61(11): 117103. doi: 10.7498/aps.61.117103
    [14] 付邦, 邓文基. 任意正多边形量子环自旋输运的普遍解.  , 2010, 59(4): 2739-2745. doi: 10.7498/aps.59.2739
    [15] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究.  , 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [16] 李鹏, 邓文基. 正多边形量子环自旋输运的严格解.  , 2009, 58(4): 2713-2719. doi: 10.7498/aps.58.2713
    [17] 尹永琦, 李华, 马佳宁, 贺泽龙, 王选章. 多端耦合量子点分子桥的量子输运特性研究.  , 2009, 58(6): 4162-4167. doi: 10.7498/aps.58.4162
    [18] 刘君民, 孙立忠, 陈元平, 张凯旺, 袁辉球, 钟建新. 镧铱硅电子结构与成键机理的第一性原理研究.  , 2009, 58(11): 7826-7832. doi: 10.7498/aps.58.7826
    [19] 徐晓光, 王春忠, 刘 伟, 孟 醒, 孙 源, 陈 岗. Mg掺杂对Li(Co,Al)O2电子结构影响的第一原理研究.  , 2005, 54(1): 313-316. doi: 10.7498/aps.54.313
    [20] 徐晓光, 魏英进, 孟醒, 王春忠, 黄祖飞, 陈岗. Mg, Al掺杂对LiCoO2体系电子结构影响的第一原理研究.  , 2004, 53(1): 210-213. doi: 10.7498/aps.53.210
计量
  • 文章访问数:  10245
  • PDF下载量:  836
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-07
  • 修回日期:  2012-06-05
  • 刊出日期:  2012-06-05

/

返回文章
返回
Baidu
map