搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

力学结构及末级压砧硬度对八面体压腔高压发生效率的影响

管俊伟 贺端威 王海阔 彭放 许超 王文丹 王凯雪 贺凯

引用本文:
Citation:

力学结构及末级压砧硬度对八面体压腔高压发生效率的影响

管俊伟, 贺端威, 王海阔, 彭放, 许超, 王文丹, 王凯雪, 贺凯

Influence of mechanical configuration and hardness of last stage anvil on high pressure producing efficiency for octahedral cell

Guan Jun-Wei, He Duan-Wei, Wang Hai-Kuo, Peng Fang, Xu Chao, Wang Wen-Dan, Wang Kai-Xue, He Kai
PDF
导出引用
  • 针对大腔体静高压装置中的多级八面体压腔,分析了两种不同加载结构的力的传递, 建立了高压发生效率的力学关系.室温下,采用定点标压法(Bi, ZnTe, ZnS, GaAs)分别标定了14/8, 12/6和10/4三种二级6-8型大腔体静高压组装的腔体压力, 定量地讨论了力学结构和末级压砧硬度对八面体压腔高压发生效率的影响. 实验结果表明,力学结构和末级压砧硬度都是影响高压发生效率的重要因素, 且力学结构对高压发生效率的影响更大.其中,腔体的几何结构越大,高压发生效率越高; 6-8型加载结构的高压发生效率高于2-6-8型加载结构;在八面体压腔内的压力接近末级压砧的维氏硬度时, 末级压砧硬度越大,高压发生效率越高,所能获得的腔体压力越大.
    We analyse the loading force transmissions for two kinds of loading structures directed at multistage octahedral cell of high pressure device, and build a mechanical relationship for high pressure producing efficiency. The relationship between cell pressure and hydraulic load is calibrated at room temperature for 14/8, 12/6 and 10/4 cell assemblies using the phase transitions of Bi, ZnTe, ZnS and GaAs under high pressure. Also we discuss qualitatively the influences of both mechanical configuration and hardness of last stage anvil on high pressure producing efficiency of octahedral cell. The experimental results show that both mechanical configuration and hardness of last stage anvil are key factors for affecting high pressure producing efficiency, what is more, the mechanical configuration is more important. The larger the geometry configuration of octahedral cell, the higher the high pressure producing efficiency is; high pressure producing efficiency of 6-8 type loading configuration is higher than that of 2-6-8 type loading configuration; when the pressure of octahedral cell approaches to Vickers hardness of last stage anvil, the harder the last stage anvil, the higher the high pressure producing efficiency and the higher cell pressure is.
    • 基金项目: 国家自然科学基金委员会-中国工程物理研究院NSAF联合基金(批准号: 10976018) 和国家自然科学基金科学仪器基础研究专项(批准号: 11027405)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China-NSAF (Grant No. 10976018) and National Natural Science Foundation of China (Grant No. 11027405).
    [1]

    Greene R G, Luo H, Ruoff A L 1994 Phys. Rev. Lett. 73 2075

    [2]

    Singh A K, Liermann H P, Akahama Y, Saxena S K, Menéndez-Proupin E 2007 J. Appl. Phys. 101 123526

    [3]

    Jayaraman A 1986 Rev. Sci. Instrum. 57 1013

    [4]

    Andrault D, Fiquet G 2001 Rev. Sci. Instrum. 72 1283

    [5]

    Peiris S M, Butcher R, Pearson W 2005 Joint 20th AIRAPT-43th EHPRG Karlsruhe, Germany, June 27-July 1, 2005

    [6]

    Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshall W G, Wilson R M 1995 Appl. Phys. Lett. 66 1735

    [7]

    Sung C M 1997 High Temp.-High Pressure 29 253

    [8]

    Khvostantsev L G 1984 High Temp.-High Pressure 16 165

    [9]

    Zhao Y S, He D W, Jiang Q, Pantea C, Lokshin K A, Zhang J Z, Daemen L L 2005 Advances in High-Pressure Technology for Geophysical Applications (Amsterdam: Elsevier B. V.) p461

    [10]

    Liebermann R C, Wang Y B 1992 High-Pressure Research: Application to Earth and Planetary Sciences (Washington DC: AGU) p19

    [11]

    Tange Y, Irifune T, Funakoshi K 2008 High Pressure Res. 28 245

    [12]

    Kunimoto T, Irifune T 2010 J. Phys.: Conf. Ser. 215 02190

    [13]

    Utsumi W, Funakoshi K I, Katayama Y, Yamakata M, Okada T, Shimomura O 2002 J. Phys.: Condens. Matter 14 10497

    [14]

    Wang Y B, Durham W B, Getting I C, Weidner D J 2003 Rev. Sci. Instrum. 74 3002

    [15]

    Katsura T, Funakoshi K, Kubo A, Nishiyama N, Tange Y, Sueda Y, Kubo T, Utsumi W 2004 Phys. Earth Planet. Int. 143-144 497

    [16]

    Reza A, Henry Z, Carter C 2005 Dia. Relat. Mater. 14 1916

    [17]

    Frost D J, Poe B T, Tronnes R G, Liebske C, Duba A,Rubie D C 2004 Phys. Earth Planet. Int. 143-144 507

    [18]

    Kawai N, Endo S 1970 Rev. Sci. Instrum. 41 1178

    [19]

    Cordier P, Rubie D C 2001 Mater. Sci. Eng. A 309-310 38

    [20]

    Lü S J, Luo J T, Shu L, Hu Y, Yuan C S, Hong S M 2009 Acta Phys. Sin. 58 6852 (in Chinese) [吕世杰, 罗建太, 苏磊, 胡云, 袁朝圣, 洪时明 2009 58 6852]

    [21]

    Kunimoto T, Irifune T, Sumiya H 2008 High Press. Res. 28 237

    [22]

    Kunimoto T, Irifune T 2010 J. Phys.: Conf. Ser. 215 012190

    [23]

    He D W, Wang F L, Kou Z L, Peng F Chinese Patent (No. ZL 2007 1 0048839.2) 13 May 2009 [贺端威, 王福龙, 寇自力, 彭放 中国专利(专利号: ZL 2007 1 0048839.2) 13 May 2009]

    [24]

    Wang F L, He D W, Fang L M, Chen X F, Li Y J, Zhang W, Zhang J, Kou Z L, Peng F 2008 Acta Phys. Sin. 57 5429 (in Chinese) [王福龙, 贺端威, 房雷鸣, 陈晓芳, 李拥军, 张伟, 张剑, 寇自力, 彭放 2008 57 5429]

    [25]

    Wang W D, He D W, Wang H K, Wang F L, Dong H N, Chen H H, Li Z Y, Zhang J, Wang S M, Kou Z L, Peng F 2010 Acta Phys. Sin. 59 3107 (in Chinese) [王文丹, 贺端威, 王海阔, 王福龙, 董海妮, 陈海花, 李子扬, 张剑, 王善民, 寇自力, 彭放 2010 59 3107]

    [26]

    Getting I C 1998 Metrologia 35 119

    [27]

    Lloyd E C 1971 NBS Special Publication 326 201

    [28]

    Ohtani A, Motobayashi M, Onodera A 1980 Phys. Lett. A 75 435

    [29]

    Ovsyannikov S V, Shchennikov V V 2004 Solid State Commun. 132 333

    [30]

    Jiang J Z, Gerward L, Frost D, Secco R, Peyronneau J, Olsen J S 1999 J. Appl. Phys. 86 6608

    [31]

    Yagi T, Akimoto S 1976 J. Appl. Phys. 47 3350

  • [1]

    Greene R G, Luo H, Ruoff A L 1994 Phys. Rev. Lett. 73 2075

    [2]

    Singh A K, Liermann H P, Akahama Y, Saxena S K, Menéndez-Proupin E 2007 J. Appl. Phys. 101 123526

    [3]

    Jayaraman A 1986 Rev. Sci. Instrum. 57 1013

    [4]

    Andrault D, Fiquet G 2001 Rev. Sci. Instrum. 72 1283

    [5]

    Peiris S M, Butcher R, Pearson W 2005 Joint 20th AIRAPT-43th EHPRG Karlsruhe, Germany, June 27-July 1, 2005

    [6]

    Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshall W G, Wilson R M 1995 Appl. Phys. Lett. 66 1735

    [7]

    Sung C M 1997 High Temp.-High Pressure 29 253

    [8]

    Khvostantsev L G 1984 High Temp.-High Pressure 16 165

    [9]

    Zhao Y S, He D W, Jiang Q, Pantea C, Lokshin K A, Zhang J Z, Daemen L L 2005 Advances in High-Pressure Technology for Geophysical Applications (Amsterdam: Elsevier B. V.) p461

    [10]

    Liebermann R C, Wang Y B 1992 High-Pressure Research: Application to Earth and Planetary Sciences (Washington DC: AGU) p19

    [11]

    Tange Y, Irifune T, Funakoshi K 2008 High Pressure Res. 28 245

    [12]

    Kunimoto T, Irifune T 2010 J. Phys.: Conf. Ser. 215 02190

    [13]

    Utsumi W, Funakoshi K I, Katayama Y, Yamakata M, Okada T, Shimomura O 2002 J. Phys.: Condens. Matter 14 10497

    [14]

    Wang Y B, Durham W B, Getting I C, Weidner D J 2003 Rev. Sci. Instrum. 74 3002

    [15]

    Katsura T, Funakoshi K, Kubo A, Nishiyama N, Tange Y, Sueda Y, Kubo T, Utsumi W 2004 Phys. Earth Planet. Int. 143-144 497

    [16]

    Reza A, Henry Z, Carter C 2005 Dia. Relat. Mater. 14 1916

    [17]

    Frost D J, Poe B T, Tronnes R G, Liebske C, Duba A,Rubie D C 2004 Phys. Earth Planet. Int. 143-144 507

    [18]

    Kawai N, Endo S 1970 Rev. Sci. Instrum. 41 1178

    [19]

    Cordier P, Rubie D C 2001 Mater. Sci. Eng. A 309-310 38

    [20]

    Lü S J, Luo J T, Shu L, Hu Y, Yuan C S, Hong S M 2009 Acta Phys. Sin. 58 6852 (in Chinese) [吕世杰, 罗建太, 苏磊, 胡云, 袁朝圣, 洪时明 2009 58 6852]

    [21]

    Kunimoto T, Irifune T, Sumiya H 2008 High Press. Res. 28 237

    [22]

    Kunimoto T, Irifune T 2010 J. Phys.: Conf. Ser. 215 012190

    [23]

    He D W, Wang F L, Kou Z L, Peng F Chinese Patent (No. ZL 2007 1 0048839.2) 13 May 2009 [贺端威, 王福龙, 寇自力, 彭放 中国专利(专利号: ZL 2007 1 0048839.2) 13 May 2009]

    [24]

    Wang F L, He D W, Fang L M, Chen X F, Li Y J, Zhang W, Zhang J, Kou Z L, Peng F 2008 Acta Phys. Sin. 57 5429 (in Chinese) [王福龙, 贺端威, 房雷鸣, 陈晓芳, 李拥军, 张伟, 张剑, 寇自力, 彭放 2008 57 5429]

    [25]

    Wang W D, He D W, Wang H K, Wang F L, Dong H N, Chen H H, Li Z Y, Zhang J, Wang S M, Kou Z L, Peng F 2010 Acta Phys. Sin. 59 3107 (in Chinese) [王文丹, 贺端威, 王海阔, 王福龙, 董海妮, 陈海花, 李子扬, 张剑, 王善民, 寇自力, 彭放 2010 59 3107]

    [26]

    Getting I C 1998 Metrologia 35 119

    [27]

    Lloyd E C 1971 NBS Special Publication 326 201

    [28]

    Ohtani A, Motobayashi M, Onodera A 1980 Phys. Lett. A 75 435

    [29]

    Ovsyannikov S V, Shchennikov V V 2004 Solid State Commun. 132 333

    [30]

    Jiang J Z, Gerward L, Frost D, Secco R, Peyronneau J, Olsen J S 1999 J. Appl. Phys. 86 6608

    [31]

    Yagi T, Akimoto S 1976 J. Appl. Phys. 47 3350

  • [1] 杨功章, 谢雷, 陈喜平, 何瑞琦, 韩铁鑫, 牛国梁, 房雷鸣, 贺端威. 巴黎-爱丁堡压机中子衍射高压下温度加载实验.  , 2022, 71(15): 156101. doi: 10.7498/aps.71.20220419
    [2] 吕常伟, 王臣菊, 顾建兵. 高温高压下立方氮化硼和六方氮化硼的结构、力学、热力学、电学以及光学性质的第一性原理研究.  , 2019, 68(7): 077102. doi: 10.7498/aps.68.20182030
    [3] 邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德. 高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质.  , 2017, 66(14): 146101. doi: 10.7498/aps.66.146101
    [4] 孙其诚. 颗粒介质的结构及热力学.  , 2015, 64(7): 076101. doi: 10.7498/aps.64.076101
    [5] 王兵, 文光俊, 王文祥. 同轴交错圆盘加载波导慢波结构高频特性的研究.  , 2014, 63(22): 224101. doi: 10.7498/aps.63.224101
    [6] 王文鹏, 刘福生, 张宁超. 冲击加载下液态水的结构相变.  , 2014, 63(12): 126201. doi: 10.7498/aps.63.126201
    [7] 曹苗苗, 刘文鑫, 王勇, 李科. 介质加载复合光栅结构的色散特性研究.  , 2014, 63(2): 024101. doi: 10.7498/aps.63.024101
    [8] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究.  , 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [9] 卢志文, 仲志国, 刘克涛, 宋海珍, 李根全. 高温高压下Ag-Mg-Zn合金中金属间化合物的微观结构与热动力学性质的第一性原理计算.  , 2013, 62(1): 016106. doi: 10.7498/aps.62.016106
    [10] 王海燕, 历长云, 高洁, 胡前库, 米国发. 高压下TiAl3结构及热动力学性质的第一性原理研究.  , 2013, 62(6): 068105. doi: 10.7498/aps.62.068105
    [11] 王斌, 刘颖, 叶金文. 高压下TiC的弹性、电子结构及热力学性质的第一性原理计算.  , 2012, 61(18): 186501. doi: 10.7498/aps.61.186501
    [12] 周大伟, 卢成, 李根全, 宋金璠, 宋玉玲, 包刚. 高压下金属Ba的结构稳定性以及热动力学的第一原理研究.  , 2012, 61(14): 146301. doi: 10.7498/aps.61.146301
    [13] 陈晔, 赵鼎, 王勇. 介质加载的矩形截面Cerenkov脉塞中带状电子注与慢波结构互作用的研究.  , 2012, 61(9): 094102. doi: 10.7498/aps.61.094102
    [14] 王文丹, 贺端威, 王海阔, 王福龙, 董海妮, 陈海花, 李子扬, 张剑, 王善民, 寇自力, 彭放. 二级6—8型大腔体装置的高压发生效率机理研究.  , 2010, 59(5): 3107-3115. doi: 10.7498/aps.59.3107
    [15] 赵永志, 江茂强, 徐平, 郑津洋. 颗粒堆内微观力学结构的离散元模拟研究.  , 2009, 58(3): 1819-1825. doi: 10.7498/aps.58.1819
    [16] 邵建立, 何安民, 秦承森, 王裴. 一维应变加载下单晶铁结构转变的微观研究.  , 2009, 58(8): 5610-5617. doi: 10.7498/aps.58.5610
    [17] 胡永金, 崔 磊, 赵 江, 滕玉永, 曾祥华, 谭明秋. 高压下ZnS的电子结构和性质.  , 2007, 56(7): 4079-4084. doi: 10.7498/aps.56.4079
    [18] 王 彬, 谢文楷. 等离子体加载耦合腔慢波结构色散分析.  , 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [19] 孙小伟, 褚衍东, 刘子江, 刘玉孝, 王成伟, 刘维民. 高温高压下闪锌矿相GaN结构和热力学特性的分子动力学研究.  , 2005, 54(12): 5830-5836. doi: 10.7498/aps.54.5830
    [20] 龚新高. 高温及高压下液体镓的结构——第一性原理分子动力学方法研究.  , 1995, 44(6): 885-896. doi: 10.7498/aps.44.885
计量
  • 文章访问数:  7275
  • PDF下载量:  834
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-26
  • 修回日期:  2012-05-28
  • 刊出日期:  2012-05-05

/

返回文章
返回
Baidu
map