-
研究了一类厄尔尼诺/拉尼娜-南方涛动(ENSO)随机扰动模型. 首先, 利用特殊的待定系数方法得到了无扰动ENSO模型下的孤子精确解. 然后利用渐近理论和方法构造了随机扰动ENSO模型的近似解, 并举例说明得到的渐近解具有较好的精度.
-
关键词:
- 孤子 /
- 渐近方法 /
- 厄尔尼诺/拉尼娜现象
A class of El Nio/La Nia-southern oscillation (ENSO) stochastic disturbed model is considered. Firstly, using the special method of undetermined coefficients, the exact solution of the non-disturbed ENSO model is obtained. Then the approximate solutions of stochastic disturbed ENSO model are constructed by using the asymptotic theory and method. And it is illustrated with example that the asymptotic solutions have the better degree of accuracy.-
Keywords:
- soliton /
- asymptotic method /
- El Nio/La Nia phenomenon
[1] Hong L, Xu J X 2001 Acta Phys. Sin. 50 612 (in Chinese) [洪灵, 徐健学 2001 50 612]
[2] Lü J H, Zhang S C 2002 Chin. Phys. 11 12
[3] Feng G L, Dai X G, Wang A H, Chou J F 2001 Acta Phys. Sin. 50 606 (in Chinese) [封国林, 戴兴刚, 王爱慧, 丑纪范 2001 50 606]
[4] Lei J, Ma S H, Fang J P 2011 Acta Phys. Sin. 60 050302 (in Chinese) [雷军, 马松华, 方建平 2011 60 050302]
[5] Liao S J 2004 Beyond Perturbation: Introduction to the Homotopy Analysis Method (New York: CRC Press) pp1---52
[6] de Jager E M, Jiang F R 1996 The Theory of Singular Perturbation (Amsterdam: North-Holland Publishing) pp299---306
[7] Barbu L, Morosanu G 2007 Singularly Perturbed Boundary-Value Problems (Basel: Birkhauserm Verlag) pp211---226
[8] Ramos M 2009 J. Math. Anal. Appl. 352 246
[9] D'Aprile T, Pistoia A 2010 J. Differ. Eqs. 248 556
[10] Faye L, Frenod E, Seck D 2011 Discrete Cont. Dyn. Syst. 29 1001
[11] Mo J Q 2009 Chin. Phys. Lett. 26 010204
[12] Mo J Q 2009 Sci. China G 39 568
[13] Mo J Q, Lin Y H, Lin W T 2010 Acta Phys. Sin. 59 6701 (in Chinese) [莫嘉琪, 林一骅, 林万涛 2010 59 6701]
[14] Mo J Q 2010 Commun. Theor. Phys. 53 440
[15] Mo J Q, Lin Y H, Lin W T 2010 Chin. Phys. B 19 030202
[16] Mo J Q, Lin W T, Lin Y H 2011 Chin. Phys. B 20 070205
-
[1] Hong L, Xu J X 2001 Acta Phys. Sin. 50 612 (in Chinese) [洪灵, 徐健学 2001 50 612]
[2] Lü J H, Zhang S C 2002 Chin. Phys. 11 12
[3] Feng G L, Dai X G, Wang A H, Chou J F 2001 Acta Phys. Sin. 50 606 (in Chinese) [封国林, 戴兴刚, 王爱慧, 丑纪范 2001 50 606]
[4] Lei J, Ma S H, Fang J P 2011 Acta Phys. Sin. 60 050302 (in Chinese) [雷军, 马松华, 方建平 2011 60 050302]
[5] Liao S J 2004 Beyond Perturbation: Introduction to the Homotopy Analysis Method (New York: CRC Press) pp1---52
[6] de Jager E M, Jiang F R 1996 The Theory of Singular Perturbation (Amsterdam: North-Holland Publishing) pp299---306
[7] Barbu L, Morosanu G 2007 Singularly Perturbed Boundary-Value Problems (Basel: Birkhauserm Verlag) pp211---226
[8] Ramos M 2009 J. Math. Anal. Appl. 352 246
[9] D'Aprile T, Pistoia A 2010 J. Differ. Eqs. 248 556
[10] Faye L, Frenod E, Seck D 2011 Discrete Cont. Dyn. Syst. 29 1001
[11] Mo J Q 2009 Chin. Phys. Lett. 26 010204
[12] Mo J Q 2009 Sci. China G 39 568
[13] Mo J Q, Lin Y H, Lin W T 2010 Acta Phys. Sin. 59 6701 (in Chinese) [莫嘉琪, 林一骅, 林万涛 2010 59 6701]
[14] Mo J Q 2010 Commun. Theor. Phys. 53 440
[15] Mo J Q, Lin Y H, Lin W T 2010 Chin. Phys. B 19 030202
[16] Mo J Q, Lin W T, Lin Y H 2011 Chin. Phys. B 20 070205
计量
- 文章访问数: 7391
- PDF下载量: 607
- 被引次数: 0