搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类扰动Burgers方程的孤子同伦映射解

石兰芳 周先春

引用本文:
Citation:

一类扰动Burgers方程的孤子同伦映射解

石兰芳, 周先春

Homotopic mapping solution of soliton for a class of disturbed Burgers equation

Shi Lan-Fang, Zhou Xian-Chun
PDF
导出引用
  • 研究一类扰动非线性Burgers方程求解问题,利用同伦映射方法和理论,得到原方程孤子的任意次精度的近似解.
    The problem of solving a class of disturbed Burgers equation is considered. Using the homotopic mapping method and theory ,the approximate solution with arbitrary degree of accuracy for the solitary wave is obtained.
    • 基金项目: 国家自然科学基金(批准号: 40876010)和国家重大公益性技术前期预研基金(批准号:GYHY200806029)资助的课题.
    [1]

    [1]Gu D F, Philander S G H 1997 Science 275 805

    [2]

    [2]McPhaden M J, Zhang D 2002 Nature 415 603

    [3]

    [3]Loutsenko I 2006 Comm. Math. Phys. 268 465

    [4]

    [4]Parkes E J 2008 Chaos Solitons Fractals 38 154

    [5]

    [5]Ma S H, Qiang J Y, Fang J P 2007 Comm. Theor. Phys. 48 662

    [6]

    [6]Gedalin M 1998 Phys. Plasmas 5 127

    [7]

    [7]Ma S H, Qiang J Y, Fang J P 2007 Acta Phys. Sin. 56 620 (in Chinese) [马松华、强继业、方建平 2007 56 620]

    [8]

    [8]Wang L S, Xu D Y 2003 Science in China E 32 488 (in Chinese) [王林山、徐道义 2003 中国科学 E 32 488]

    [9]

    [9]Yang J R, Mao J J 2008 Chin. Phys. Lett. 25 1527

    [10]

    ]Gao Y, Tang X Y 2007 Commum. Theor. Phys. 48 961

    [11]

    ]Yang J R, Mao J J 2008 Chin. Phys. 17 4337

    [12]

    ]Pan L X, Zuo W M, Yan J R 2005 Acta Phys. Sin. 54 1 (in Chinese) [潘留仙、左伟明、颜家壬 2005 54 1]

    [13]

    ]Lu D C, Hong B J, Tian L X 2006 Acta Phys. Sin. 55 5617 (in Chinese) [卢殿臣、烘宝剑、田立新 2006 55 5617]

    [14]

    ]Tapgetusang, Sirendaoerji 2009 Acta Phys. Sin. 58 2121 (in Chinese) [套格图桑、斯仁道尔吉 2009 58 2121]

    [15]

    ]Parkes E J, DuffyB R 1996 Comput. Phys. Commun. 98 288

    [16]

    ]Wang ML 1995 Phys. Lett. A 199 169

    [17]

    ]Sirendaoreji , SunJ 2003 Phys. Lett. A 309 387

    [18]

    ]Liu S K, Fu Z T, Liu S D, Zhao Q 2002 Acta Phys. Sin. 51 10(in Chinese) [刘式适、付遵涛、刘式达、赵强 2002 51 10]

    [19]

    ]Fan E G 2000 Phys. Lett. A 277 212

    [20]

    ]Elwakil S A, El-labany S K, Zaharan M A 2002 Phys. Lett. A 299 179

    [21]

    ]Mo J Q, Lin W T,Zhu J 2004 Prog. Nat. Sci. 14 1126

    [22]

    ]Mo J Q, Lin W T 2005 Chin. Phys. 14 875

    [23]

    ]Mo J Q, Lin W T, Wang H 2006 Chin. Phys. 15 578

    [24]

    ]Mo J Q, Wang H, Lin W T, Lin Y H 2006 Chin. Phys. 15 671

    [25]

    ]Mo J Q, Lin W T, Wang H 2007 Chin. Phys. 16 578

    [26]

    ]Mo J Q, Lin W T, Wang H 2007 Chin. Phys. 16 951

    [27]

    ]Mo J Q, Lin W T 2008 Chin. Phys. B 17 370

    [28]

    ]Mo J Q, Lin W T 2008 Chin. Phys. B 17 743

    [29]

    ]Mo J Q, Wang H, Lin W T, Lin Y H 2006 Acta Phys. Sin. 55 6(in Chinese) [莫嘉琪王辉、林万涛、林一骅 2006 55 6]

    [30]

    ]Mo J Q, Zhang W J, He M 2007 Acta Phys. Sin. 56 1843 (in Chinese) [莫嘉琪、张伟江、何铭 2007 56 1843]

    [31]

    ]Mo J Q, Chen L H 2008 Acta Phys. Sin. 57 4646 (in Chinese) [莫嘉琪、陈丽华2008 57 4646]

    [32]

    ]Mo J Q 2009 Acta Phys. Sin. 58 2930 (in Chinese) [莫嘉琪2009 58 2930]

    [33]

    ]Mo J Q, Chen Y 2009 Acta Phys. Sin. 58 4379(in Chinese) [莫嘉琪、程燕2009 58 4379]

    [34]

    ]Mo J Q 2009 Acta Phys. Sin. 58 695 (in Chinese) [莫嘉琪 2009 58 695]

    [35]

    ]Liao S J 2004 Beyond Perturbation: Introduction to the Homotopy Analysis Method (New York: CRC Press Co)

    [36]

    ]He J H 2002 Approximate Analytical Methods in Engineering and Sciences (Zhengzhou: Henan Science and Technology Press) (in Chinese) [何吉欢 2002 工程和科学计算中的近似非线性分析方法 (郑州 河南科学技术出版社)]

    [37]

    ]Wahl quist H D,Estabrook FB 1975 J. Math. Phys. 16 1

    [38]

    ]Zhang G X, Li Z B,Duan Y S 2000 Science in China A 12 1103

  • [1]

    [1]Gu D F, Philander S G H 1997 Science 275 805

    [2]

    [2]McPhaden M J, Zhang D 2002 Nature 415 603

    [3]

    [3]Loutsenko I 2006 Comm. Math. Phys. 268 465

    [4]

    [4]Parkes E J 2008 Chaos Solitons Fractals 38 154

    [5]

    [5]Ma S H, Qiang J Y, Fang J P 2007 Comm. Theor. Phys. 48 662

    [6]

    [6]Gedalin M 1998 Phys. Plasmas 5 127

    [7]

    [7]Ma S H, Qiang J Y, Fang J P 2007 Acta Phys. Sin. 56 620 (in Chinese) [马松华、强继业、方建平 2007 56 620]

    [8]

    [8]Wang L S, Xu D Y 2003 Science in China E 32 488 (in Chinese) [王林山、徐道义 2003 中国科学 E 32 488]

    [9]

    [9]Yang J R, Mao J J 2008 Chin. Phys. Lett. 25 1527

    [10]

    ]Gao Y, Tang X Y 2007 Commum. Theor. Phys. 48 961

    [11]

    ]Yang J R, Mao J J 2008 Chin. Phys. 17 4337

    [12]

    ]Pan L X, Zuo W M, Yan J R 2005 Acta Phys. Sin. 54 1 (in Chinese) [潘留仙、左伟明、颜家壬 2005 54 1]

    [13]

    ]Lu D C, Hong B J, Tian L X 2006 Acta Phys. Sin. 55 5617 (in Chinese) [卢殿臣、烘宝剑、田立新 2006 55 5617]

    [14]

    ]Tapgetusang, Sirendaoerji 2009 Acta Phys. Sin. 58 2121 (in Chinese) [套格图桑、斯仁道尔吉 2009 58 2121]

    [15]

    ]Parkes E J, DuffyB R 1996 Comput. Phys. Commun. 98 288

    [16]

    ]Wang ML 1995 Phys. Lett. A 199 169

    [17]

    ]Sirendaoreji , SunJ 2003 Phys. Lett. A 309 387

    [18]

    ]Liu S K, Fu Z T, Liu S D, Zhao Q 2002 Acta Phys. Sin. 51 10(in Chinese) [刘式适、付遵涛、刘式达、赵强 2002 51 10]

    [19]

    ]Fan E G 2000 Phys. Lett. A 277 212

    [20]

    ]Elwakil S A, El-labany S K, Zaharan M A 2002 Phys. Lett. A 299 179

    [21]

    ]Mo J Q, Lin W T,Zhu J 2004 Prog. Nat. Sci. 14 1126

    [22]

    ]Mo J Q, Lin W T 2005 Chin. Phys. 14 875

    [23]

    ]Mo J Q, Lin W T, Wang H 2006 Chin. Phys. 15 578

    [24]

    ]Mo J Q, Wang H, Lin W T, Lin Y H 2006 Chin. Phys. 15 671

    [25]

    ]Mo J Q, Lin W T, Wang H 2007 Chin. Phys. 16 578

    [26]

    ]Mo J Q, Lin W T, Wang H 2007 Chin. Phys. 16 951

    [27]

    ]Mo J Q, Lin W T 2008 Chin. Phys. B 17 370

    [28]

    ]Mo J Q, Lin W T 2008 Chin. Phys. B 17 743

    [29]

    ]Mo J Q, Wang H, Lin W T, Lin Y H 2006 Acta Phys. Sin. 55 6(in Chinese) [莫嘉琪王辉、林万涛、林一骅 2006 55 6]

    [30]

    ]Mo J Q, Zhang W J, He M 2007 Acta Phys. Sin. 56 1843 (in Chinese) [莫嘉琪、张伟江、何铭 2007 56 1843]

    [31]

    ]Mo J Q, Chen L H 2008 Acta Phys. Sin. 57 4646 (in Chinese) [莫嘉琪、陈丽华2008 57 4646]

    [32]

    ]Mo J Q 2009 Acta Phys. Sin. 58 2930 (in Chinese) [莫嘉琪2009 58 2930]

    [33]

    ]Mo J Q, Chen Y 2009 Acta Phys. Sin. 58 4379(in Chinese) [莫嘉琪、程燕2009 58 4379]

    [34]

    ]Mo J Q 2009 Acta Phys. Sin. 58 695 (in Chinese) [莫嘉琪 2009 58 695]

    [35]

    ]Liao S J 2004 Beyond Perturbation: Introduction to the Homotopy Analysis Method (New York: CRC Press Co)

    [36]

    ]He J H 2002 Approximate Analytical Methods in Engineering and Sciences (Zhengzhou: Henan Science and Technology Press) (in Chinese) [何吉欢 2002 工程和科学计算中的近似非线性分析方法 (郑州 河南科学技术出版社)]

    [37]

    ]Wahl quist H D,Estabrook FB 1975 J. Math. Phys. 16 1

    [38]

    ]Zhang G X, Li Z B,Duan Y S 2000 Science in China A 12 1103

  • [1] 孙斌, 赵立臣, 刘杰. 双孤子非线性干涉中的狄拉克磁单极势.  , 2023, 72(10): 100501. doi: 10.7498/aps.72.20222416
    [2] 石兰芳, 陈贤峰, 韩祥临, 许永红, 莫嘉琪. 一类Fermi气体在非线性扰动机制中轨线的渐近表示.  , 2014, 63(6): 060204. doi: 10.7498/aps.63.060204
    [3] 石兰芳, 周先春, 莫嘉琪. 一类大气浅水波系统的广义变分迭代行波近似解.  , 2013, 62(23): 230202. doi: 10.7498/aps.62.230202
    [4] 洪宝剑, 卢殿臣. 一类广义扰动KdV-Burgers方程的同伦近似解.  , 2013, 62(17): 170202. doi: 10.7498/aps.62.170202
    [5] 吴钦宽. 一类非线性扰动Burgers方程的孤子变分迭代解法.  , 2012, 61(2): 020203. doi: 10.7498/aps.61.020203
    [6] 谢峰, 林一骅, 林万涛, 莫嘉琪. 扰动厄尔尼诺/拉尼娜-南方涛动模型的解.  , 2011, 60(1): 010201. doi: 10.7498/aps.60.010201
    [7] 许永红, 温朝晖, 莫嘉琪. 扰动mKdV耦合系统的孤子解.  , 2011, 60(5): 050205. doi: 10.7498/aps.60.050205
    [8] 吴钦宽. 输电线非线性振动问题的同伦映射近似解.  , 2011, 60(6): 068802. doi: 10.7498/aps.60.068802
    [9] 莫嘉琪, 林一骅, 林万涛. 海-气振子厄尔尼诺-南方涛动模型的近似解.  , 2010, 59(10): 6707-6711. doi: 10.7498/aps.59.6707
    [10] 周先春, 林万涛, 林一骅, 莫嘉琪. 一类扰动海-气耦合振子机理的近似解.  , 2010, 59(4): 2173-2177. doi: 10.7498/aps.59.2173
    [11] 莫嘉琪. 一类广义Sine-Gordon扰动方程的解析解.  , 2009, 58(5): 2930-2933. doi: 10.7498/aps.58.2930
    [12] 石兰芳, 莫嘉琪. 一类扰动非线性发展方程的类孤子同伦近似解析解.  , 2009, 58(12): 8123-8126. doi: 10.7498/aps.58.8123
    [13] 林万涛, 莫嘉琪. 一类全球气候气-海耦合振子机理的近似解析解.  , 2008, 57(5): 2633-2637. doi: 10.7498/aps.57.2633
    [14] 莫嘉琪, 林万涛. 一类Lorenz系统的同伦映射解法.  , 2008, 57(11): 6694-6698. doi: 10.7498/aps.57.6694
    [15] 莫嘉琪, 姚静荪. 扰动KdV方程孤子的同伦映射解.  , 2008, 57(12): 7419-7422. doi: 10.7498/aps.57.7419
    [16] 莫嘉琪, 张伟江, 何 铭. 非线性广义Landau-Ginzburg-Higgs方程孤子解的变分迭代解法.  , 2007, 56(4): 1847-1850. doi: 10.7498/aps.56.1847
    [17] 莫嘉琪, 林万涛. 副热带圈和赤道太平洋年代际变更的海-气振子模型解的同伦映射方法.  , 2007, 56(10): 5565-5568. doi: 10.7498/aps.56.5565
    [18] 莫嘉琪, 林万涛. 一类大气浅水波方程的近似解.  , 2007, 56(7): 3662-3666. doi: 10.7498/aps.56.3662
    [19] 莫嘉琪, 王 辉, 林万涛. 地-气耦合动力系统的近似解析解.  , 2006, 55(2): 485-489. doi: 10.7498/aps.55.485
    [20] 莫嘉琪, 王 辉, 林一骅. 广义Landau-Ginzburg-Higgs方程孤子解的扰动理论.  , 2005, 54(12): 5581-5584. doi: 10.7498/aps.54.5581
计量
  • 文章访问数:  8669
  • PDF下载量:  745
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-30
  • 修回日期:  2009-08-11
  • 刊出日期:  2010-05-15

/

返回文章
返回
Baidu
map