搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介观尺度流体绕流球体的耗散粒子动力学模拟

常建忠 刘汉涛 刘谋斌 苏铁熊

引用本文:
Citation:

介观尺度流体绕流球体的耗散粒子动力学模拟

常建忠, 刘汉涛, 刘谋斌, 苏铁熊

Dissipative particle dynamics simulation of flow around a mesoscopic sphere with different Reynolds numbers

Chang Jian-Zhong, Liu Han-Tao, Liu Mou-Bin, Su Tie-Xiong
PDF
导出引用
  • 采用耗散粒子动力学(dissipative particle dynamics, DPD)方法, 对两平行平板间流体绕流三维球体进行了计算. 球体和平行平板由达到平衡状态的冻结DPD粒子组成, 流体在不同无量纲外力驱动下流动, 球体受力由组成球体的所有冻结DPD粒子求和得到. 流动达到充分发展后, 输出球体在流动方向的受力, 并计算球体的阻力系数, 与文献中的关联式进行了对比. 结果表明, 在Reqslant 100的范围内, DPD方法能较准确地计算出阻力系数, 在较大雷诺数时, 由于流体的压缩性导致计算结果出现差异.
    Dissipative particle dynamics (DPD) is used to investigate the flow passing through a three-dimensional sphere within two parallel plates. The sphere and the plates are composed of frozen DPD particles which are in an equilibrium state. The fluid is driven by a dimensionless external force exerting on each fluid particle. The force on the sphere is computed from the total particles consistituting the sphere. After the flow is fully developed, the obtained results, including the force exerted on the sphere is computed, and then we can calculate the drag coefficient. The accuracy and the reliability are compared with classical results. The results show that the DPD method can predict drag coefficient accurately when Re is less than 100. However, when Re is bigger than 100, the results deviate from analytical values, which is due mainly to the fluid compressibility.
      通信作者: 刘汉涛, lht@nuc.edu.cn
    • 基金项目: 国家自然科学基金(批准号:50976108) 资助的课题.
      Corresponding author: Liu Han-Tao, lht@nuc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.50976108).
    [1]

    Zheng G B,Jin N D 2009 Acta Phys.Sin.58 4485 (in Chinese)[郑桂波,金宁德 2009 58 4485]

    [2]

    Hao P F,Yao C H,He F 2007 Acta Phys.Sin.56 4728 (in Chinese)[郝鹏飞,姚朝晖,何枫 2007 56 4728]

    [3]

    Liu M B,Meakin P,Huang H 2007 J.Comput.Phys.222 110

    [4]

    Cheng N S 2009 Powder Technology 189 395

    [5]

    Gabitto J,Tsouris C 2008 Powder Technology 183 314

    [6]

    Feng J,Joseph D D 1995 J.Fluid Mech.303 83

    [7]

    Liu H T,Tong Z H,An K,Ma L Q 2009 Acta Phys.Sin.58 6369(in Chinese) [刘汉涛,仝志辉,安康,马理强 2009 \ 586369]

    [8]

    Liu H T,Chang J Z,An K,Su T X 2010 Acta Phys.Sin.59 1877(in Chinese) [刘汉涛,常建忠,安康,苏铁熊 2010 \ 591877]

    [9]

    Lim C Y 2002 Phys.Fluids A 14 2299

    [10]

    Monaghan J J 1992 Ann.Rev.Astron.Astrophys 30 543

    [11]

    Liu M B,Liu G R 2010 Arxiv.Comput.Methods Engrs.17 25

    [12]

    Chang J Z,Liu M B,Liu H T 2008 Acta Phys.Sin.57 3954 (in Chinese) [常建忠,刘谋斌,刘汉涛 2008 57 3954]

    [13]

    Espanol P 1995 Phys.Rev.E:Stat.Phys.Plasmas Fluid 52 1734

    [14]

    Hoogerbrugge P J,Koelman J 1992 Europhys.Lett.19 155

    [15]

    Koelman J,Hoogerbrugge P J 1993 Europhys.Lett.21 363

    [16]

    Revenga M,Zuniga I,Espanol P 1999 Compt.Phys.Comm.121 309

    [17]

    Marsh C A,Backx G,Ernst M H 1997 Phys.Rev.56 1676

    [18]

    Sangani A S,Acrivos A 1982 International Journal of Multiphase Flow 8 193

    [19]

    Boek E S,Coveney P V,Lekkerkerker H N W 1996 Journal of Physics- Condensed Matter 8 9509

    [20]

    Boek E S,Schoot P 1998 Int.J.Mod.Phys.C 9 1307

    [21]

    Chen S,Phan-Thien N,Khoo B C,Fan X J 2006 Phys.Fluids 18 103605

    [22]

    Kim J M,Phillips R J 2004 Chem.Eng.Sci.59 4155

    [23]

    Liu M B,Chang J Z 2010 Acta Phys.Sin.59 7556 (in Chinese)[刘谋斌,常建忠 2010 59 7556]

    [24]

    Groot R D,Warren P B 1997 J.Chem.Phys.107 4423

    [25]

    Batchelor G K 1967 An Introduction to Fluid Dynamics (Cambridge:Cambridge University Press) p120

    [26]

    Brown P P,Lawler D F 2003 J.Environ.Eng.129 222

  • [1]

    Zheng G B,Jin N D 2009 Acta Phys.Sin.58 4485 (in Chinese)[郑桂波,金宁德 2009 58 4485]

    [2]

    Hao P F,Yao C H,He F 2007 Acta Phys.Sin.56 4728 (in Chinese)[郝鹏飞,姚朝晖,何枫 2007 56 4728]

    [3]

    Liu M B,Meakin P,Huang H 2007 J.Comput.Phys.222 110

    [4]

    Cheng N S 2009 Powder Technology 189 395

    [5]

    Gabitto J,Tsouris C 2008 Powder Technology 183 314

    [6]

    Feng J,Joseph D D 1995 J.Fluid Mech.303 83

    [7]

    Liu H T,Tong Z H,An K,Ma L Q 2009 Acta Phys.Sin.58 6369(in Chinese) [刘汉涛,仝志辉,安康,马理强 2009 \ 586369]

    [8]

    Liu H T,Chang J Z,An K,Su T X 2010 Acta Phys.Sin.59 1877(in Chinese) [刘汉涛,常建忠,安康,苏铁熊 2010 \ 591877]

    [9]

    Lim C Y 2002 Phys.Fluids A 14 2299

    [10]

    Monaghan J J 1992 Ann.Rev.Astron.Astrophys 30 543

    [11]

    Liu M B,Liu G R 2010 Arxiv.Comput.Methods Engrs.17 25

    [12]

    Chang J Z,Liu M B,Liu H T 2008 Acta Phys.Sin.57 3954 (in Chinese) [常建忠,刘谋斌,刘汉涛 2008 57 3954]

    [13]

    Espanol P 1995 Phys.Rev.E:Stat.Phys.Plasmas Fluid 52 1734

    [14]

    Hoogerbrugge P J,Koelman J 1992 Europhys.Lett.19 155

    [15]

    Koelman J,Hoogerbrugge P J 1993 Europhys.Lett.21 363

    [16]

    Revenga M,Zuniga I,Espanol P 1999 Compt.Phys.Comm.121 309

    [17]

    Marsh C A,Backx G,Ernst M H 1997 Phys.Rev.56 1676

    [18]

    Sangani A S,Acrivos A 1982 International Journal of Multiphase Flow 8 193

    [19]

    Boek E S,Coveney P V,Lekkerkerker H N W 1996 Journal of Physics- Condensed Matter 8 9509

    [20]

    Boek E S,Schoot P 1998 Int.J.Mod.Phys.C 9 1307

    [21]

    Chen S,Phan-Thien N,Khoo B C,Fan X J 2006 Phys.Fluids 18 103605

    [22]

    Kim J M,Phillips R J 2004 Chem.Eng.Sci.59 4155

    [23]

    Liu M B,Chang J Z 2010 Acta Phys.Sin.59 7556 (in Chinese)[刘谋斌,常建忠 2010 59 7556]

    [24]

    Groot R D,Warren P B 1997 J.Chem.Phys.107 4423

    [25]

    Batchelor G K 1967 An Introduction to Fluid Dynamics (Cambridge:Cambridge University Press) p120

    [26]

    Brown P P,Lawler D F 2003 J.Environ.Eng.129 222

  • [1] 杨颖, 宋俊杰, 万明威, 高靓辉, 方维海. 分子层次的金纳米棒-表面活性剂-磷脂自组装复合体形貌.  , 2020, 69(24): 248701. doi: 10.7498/aps.69.20200979
    [2] 林晨森, 陈硕, 肖兰兰. 适用复杂几何壁面的耗散粒子动力学边界条件.  , 2019, 68(14): 140204. doi: 10.7498/aps.68.20190533
    [3] 许少锋, 楼应侯, 吴尧锋, 王向垟, 何平. 微通道疏水表面滑移的耗散粒子动力学研究.  , 2019, 68(10): 104701. doi: 10.7498/aps.68.20182002
    [4] 蒋涛, 陈振超, 任金莲, 李刚. 基于修正并行光滑粒子动力学方法三维变系数瞬态热传导问题的模拟.  , 2017, 66(13): 130201. doi: 10.7498/aps.66.130201
    [5] 刘汉涛, 江山, 王艳华, 王婵娟, 李海桥. 溶解椭圆颗粒沉降的介观尺度数值模拟.  , 2015, 64(11): 114401. doi: 10.7498/aps.64.114401
    [6] 范洪义, 何锐. 介观RLC电路的密度矩阵的量子耗散.  , 2014, 63(11): 110301. doi: 10.7498/aps.63.110301
    [7] 林晨森, 陈硕, 李启良, 杨志刚. 耗散粒子动力学GPU并行计算研究.  , 2014, 63(10): 104702. doi: 10.7498/aps.63.104702
    [8] 许少锋, 汪久根. 微通道中高分子溶液Poiseuille流的耗散粒子动力学模拟.  , 2013, 62(12): 124701. doi: 10.7498/aps.62.124701
    [9] 刘汉涛, 刘谋斌, 常建忠, 苏铁熊. 介观尺度通道内多相流动的耗散粒子动力学模拟.  , 2013, 62(6): 064705. doi: 10.7498/aps.62.064705
    [10] 王晓亮, 陈硕. 液气共存的耗散粒子动力学模拟.  , 2010, 59(10): 6778-6785. doi: 10.7498/aps.59.6778
    [11] 刘谋斌, 常建忠. 耗散粒子动力学处理复杂固体壁面的一种有效方法.  , 2010, 59(11): 7556-7563. doi: 10.7498/aps.59.7556
    [12] 常建忠, 刘谋斌, 刘汉涛. 微液滴动力学特性的耗散粒子动力学模拟.  , 2008, 57(7): 3954-3961. doi: 10.7498/aps.57.3954
    [13] 谢月新, 李志坚, 周光辉. 介观耗散电容耦合电路量子化中的正则变换.  , 2007, 56(12): 7224-7229. doi: 10.7498/aps.56.7224
    [14] 邱深玉, 蔡绍洪. 耗散介观电容耦合电路的量子效应.  , 2006, 55(2): 816-819. doi: 10.7498/aps.55.816
    [15] 宋同强. 耗散介观电容耦合电路的量子化.  , 2004, 53(5): 1352-1356. doi: 10.7498/aps.53.1352
    [16] 王忠纯. 介观耗散传输线的量子化.  , 2003, 52(11): 2870-2874. doi: 10.7498/aps.52.2870
    [17] 龙超云, 刘波, 王心福. 耗散介观电容耦合电路的量子涨落.  , 2002, 51(1): 159-162. doi: 10.7498/aps.51.159
    [18] 王继锁, 冯健, 詹明生. 无耗散介观电感耦合电路的库仑阻塞和电荷的量子效应.  , 2001, 50(2): 299-303. doi: 10.7498/aps.50.299
    [19] 凌瑞良. R(t)LC介观电路的量子力学处理.  , 1999, 48(12): 2343-2348. doi: 10.7498/aps.48.2343
    [20] 邹健, 邵彬, 邢修三. 双模非经典光场辐照下介观约瑟夫森结中超流的动力学行为.  , 1997, 46(11): 2233-2240. doi: 10.7498/aps.46.2233
计量
  • 文章访问数:  7656
  • PDF下载量:  777
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-10
  • 修回日期:  2011-07-12
  • 刊出日期:  2012-03-05

/

返回文章
返回
Baidu
map