-
The synchronization and the parameter identification of a complex network are studied, in which nodes are uncertain spatiotemporal chaos systems. The recognition laws of parameters are designed, and the unknown parameters in spatiotemporal chaos systems at the nodes of the complex network are identified. An appropriate Lyapunov function is constructed, and the conditions of realizing global synchronization of the network are discussed and confirmed based on the stability theory. The uncertain complex Ginzburg-Landau equation having spatiotemporal chaos behavior is taken as nodes in the complex network, and simulation results of spatiotemporal chaos synchronization and parameter identification show the effectiveness of the method.
-
Keywords:
- synchronization /
- parameter identification /
- complex network /
- spatiotemporal chaos
[1] Chat H 1994 Nonlinearity 7 185
[2] [3] Chat H, Manneville P 1996 Physica A 224 348
[4] [5] Shao X, Ren Y, Ouyang Q 2006 Chin. Phys. 15 513
[6] Feng J, Xu W C, Li S X, Liu S H 2007 Science in China G 37 427 (in Chinese)[冯杰, 徐文成, 李书贤, 刘颂豪 2007 中国科学G 37 427]
[7] [8] Ding W S, Xi L, Liu L H 2008 Acta Phys. Sin. 57 7705 (in Chinese)[丁万山, 席崚, 柳莲花 2008 57 7705]
[9] [10] Montague R, Colet P 1997 Phys. Rev. E 56 4017
[11] [12] [13] Hu G, Xiao J H, Gao J H, Li X M, Yao Y G, Hu B 2000 Phys. Rev. E 62 3043
[14] [15] Gao J H, Wang X G, Hu G, Xiao J H 2001 Phys. Lett. A 283 342
[16] [17] Jiang M X, Wang X N, Ouyang Q, Zhang H 2004 Phys. Rev. E 69 56202
[18] Gao J H, Zheng Z G 2007 Chin. Phys. Lett. 24 359
[19] [20] [21] Kanevsky Y, Nepomnyashchy A A 2008 Phys. Lett. A 372 7156
[22] [23] Gao J H, Xie L L, Peng J H 2009 Acta Phys. Sin. 58 5218 (in Chinese)[高继华, 谢玲玲, 彭建华 2009 58 5218]
[24] [25] Zhou J H, Deng M Y, Tang G N, Kong L J, Liu M R 2009 Acta Phys. Sin. 58 6828 (in Chinese)[周建槐, 邓敏艺, 唐国宁, 孔令江, 刘慕仁 2009 58 6828]
[26] Junge L, Parlitz U 2000 Phys. Rev. E 61 3736
[27] [28] Hramov A E, Koronovskii A A, Popov P V 2005 Phys. Rev. E 72 037201
[29] [30] [31] Nie H C, Xie L L, Gao J H, Zhan M 2011 Chaos 21 023107
[32] [33] Zhan M, Wang X G, Gong X F, Lai C H 2005 Phys. Rev. E 71 036212
[34] [35] L L 2000 Nonlinear Dynamics and Chaos (Dalian: Dalian Publishing House) (in Chinese)[吕翎 2000 非线性动力学与混沌(大连: 大连出版社)]
[36] Cross M C, Hohenberg P C 1993 Rev. Mod. Phys. 65 851
[37] -
[1] Chat H 1994 Nonlinearity 7 185
[2] [3] Chat H, Manneville P 1996 Physica A 224 348
[4] [5] Shao X, Ren Y, Ouyang Q 2006 Chin. Phys. 15 513
[6] Feng J, Xu W C, Li S X, Liu S H 2007 Science in China G 37 427 (in Chinese)[冯杰, 徐文成, 李书贤, 刘颂豪 2007 中国科学G 37 427]
[7] [8] Ding W S, Xi L, Liu L H 2008 Acta Phys. Sin. 57 7705 (in Chinese)[丁万山, 席崚, 柳莲花 2008 57 7705]
[9] [10] Montague R, Colet P 1997 Phys. Rev. E 56 4017
[11] [12] [13] Hu G, Xiao J H, Gao J H, Li X M, Yao Y G, Hu B 2000 Phys. Rev. E 62 3043
[14] [15] Gao J H, Wang X G, Hu G, Xiao J H 2001 Phys. Lett. A 283 342
[16] [17] Jiang M X, Wang X N, Ouyang Q, Zhang H 2004 Phys. Rev. E 69 56202
[18] Gao J H, Zheng Z G 2007 Chin. Phys. Lett. 24 359
[19] [20] [21] Kanevsky Y, Nepomnyashchy A A 2008 Phys. Lett. A 372 7156
[22] [23] Gao J H, Xie L L, Peng J H 2009 Acta Phys. Sin. 58 5218 (in Chinese)[高继华, 谢玲玲, 彭建华 2009 58 5218]
[24] [25] Zhou J H, Deng M Y, Tang G N, Kong L J, Liu M R 2009 Acta Phys. Sin. 58 6828 (in Chinese)[周建槐, 邓敏艺, 唐国宁, 孔令江, 刘慕仁 2009 58 6828]
[26] Junge L, Parlitz U 2000 Phys. Rev. E 61 3736
[27] [28] Hramov A E, Koronovskii A A, Popov P V 2005 Phys. Rev. E 72 037201
[29] [30] [31] Nie H C, Xie L L, Gao J H, Zhan M 2011 Chaos 21 023107
[32] [33] Zhan M, Wang X G, Gong X F, Lai C H 2005 Phys. Rev. E 71 036212
[34] [35] L L 2000 Nonlinear Dynamics and Chaos (Dalian: Dalian Publishing House) (in Chinese)[吕翎 2000 非线性动力学与混沌(大连: 大连出版社)]
[36] Cross M C, Hohenberg P C 1993 Rev. Mod. Phys. 65 851
[37]
计量
- 文章访问数: 7909
- PDF下载量: 773
- 被引次数: 0