-
研究了一类噪声诱导的二维复时空系统的同步问题.首先讨论了二维复Ginzburg-Laudau(CGL) 方程随时间和空间变化的时空混沌特性;其次,研究了时空噪声驱动下CGL系统的同步问题.理论上利用线性稳定性分析,得到了常数激励下CGL系统达到稳定态的临界强度;结合噪声的随机性和非零均值特性, 揭示了噪声诱导同步的机理;并从理论上和数值上分别给出了达到同步所需要的控制参数和噪声强度满足的条件,实现了两个非耦合CGL系统的完全同步.结果表明,数值模拟和理论分析有很好的一致性.
-
关键词:
- 同步 /
- 时空噪声 /
- 时空混沌 /
- 复Ginzburg-Laudau方程
A type of noise-induced synchronization in two-dimensional (2D) complex spatiotemporal system is studied in this paper. First, we employ a 2D complex Ginzburg-Laudau equation (CGL) to present spatiotemporal chaos. Then the synchronization in the CGL equation driven by spatiotemporal noise is studied. Theoretically, the critical control intensity is obtained by linear stability analysis of a constant forced CGL system. Combining with randomness and non-zero mean of the noise, we reveal the mechanism of synchronization and give the required conditions for control parameters and noise intensity resulting in synchronization theoretically and numerically. A complete synchronization in a pair of uncoupled CGL equations is achieved. A good agreement between the theoretical analyses and the numerical results is obtained.-
Keywords:
- synchronization /
- noise /
- spatiotemporal chaos /
- complex Ginzburg-Laudau equation
[1] Hu G, Xiao J H, Zheng Z G 2000 Chaos Control (Shanghai: Shanghai Scientific and Technological Press) pp78-148 (in Chinese) [胡岗, 萧井华, 郑志刚 2000 混沌控制 (上海: 上海科技教育出版社)第78-第148页
[2] Jia F L, Xu W, Du L 2007 Acta Phys. Sin. 56 5640 (in Chinese) [贾飞蕾, 徐伟, 都琳 2007 56 5640]
[3] Lü L, Li G, Chai Y 2008 Acta Phys. Sin. 57 7517 (in Chinese) [吕翎, 李钢, 柴元 2008 57 7517]
[4] Ahlborn A, Parlitz U 2008 Phys. Rev. E 77 016201
[5] Wang X Y, Zhang N, Ren X L, Zhang Y L 2011 Chin. Phys. B 20 020507
[6] Hramov A E, Koronovskii A A, Popov P V 2005 Phys. Rev. E 72 037201
[7] Hramov A E, Koronovskii A A, Popov P V 2008 Phys. Rev. E 77 036215
[8] Goldobin D S, Pikovsky A 2005 Phys. Rev. E 71 045201(R)
[9] Hramov A E, Koronovskii A A, Popov P V, Moskalenko O I 2006 Phys. Lett. A 354 423
[10] Hu A H, Xu Z Y 2007 Acta Phys. Sin. 56 3132 (in Chinese) [胡爱花, 徐振源 2007 56 3132]
[11] Moskalenko O L, Koronovskii A A, Hramov A E 2010 Phys. Lett. A 374 2925
[12] Guo B L, Huang H Y 2003 Ginzburg-Laudau Equation (Beijing: Science Press) pp121-130 (in Chinese) [郭柏灵, 黄海洋 2002 金兹堡-朗道方程 (北京: 科学出版社) 第121-130页]
[13] Aranson I S, Kramer L 2002 Rev. Modern Phys. 74 100
[14] Du L, Xu W, Li Z, Zhou B 2011 Phys. Lett. A 375 1870
[15] Bartuccelli M, Constantin P, Doering C R 1990 Physica D 44 421
[16] Gao J L, Xie L L, Peng J H 2009 Acta Phys. Sin. 58 5218 (in Chinese) [高继华, 谢玲玲, 彭建华 2009 58 5218]
[17] Chate H, Pikovsky A S, Rudzick O 1999 Physica D 131 17
[18] Ouyang Q 2010 Introduction of Nonlinear Science and Pattern Dynamics (Beijing: Beijing University Press) pp140-142 (in Chinese) [欧阳颀 2010 非线性科学与斑图动力学导论 (第二版) (北京: 北京大学出版社) 第140-142页]
-
[1] Hu G, Xiao J H, Zheng Z G 2000 Chaos Control (Shanghai: Shanghai Scientific and Technological Press) pp78-148 (in Chinese) [胡岗, 萧井华, 郑志刚 2000 混沌控制 (上海: 上海科技教育出版社)第78-第148页
[2] Jia F L, Xu W, Du L 2007 Acta Phys. Sin. 56 5640 (in Chinese) [贾飞蕾, 徐伟, 都琳 2007 56 5640]
[3] Lü L, Li G, Chai Y 2008 Acta Phys. Sin. 57 7517 (in Chinese) [吕翎, 李钢, 柴元 2008 57 7517]
[4] Ahlborn A, Parlitz U 2008 Phys. Rev. E 77 016201
[5] Wang X Y, Zhang N, Ren X L, Zhang Y L 2011 Chin. Phys. B 20 020507
[6] Hramov A E, Koronovskii A A, Popov P V 2005 Phys. Rev. E 72 037201
[7] Hramov A E, Koronovskii A A, Popov P V 2008 Phys. Rev. E 77 036215
[8] Goldobin D S, Pikovsky A 2005 Phys. Rev. E 71 045201(R)
[9] Hramov A E, Koronovskii A A, Popov P V, Moskalenko O I 2006 Phys. Lett. A 354 423
[10] Hu A H, Xu Z Y 2007 Acta Phys. Sin. 56 3132 (in Chinese) [胡爱花, 徐振源 2007 56 3132]
[11] Moskalenko O L, Koronovskii A A, Hramov A E 2010 Phys. Lett. A 374 2925
[12] Guo B L, Huang H Y 2003 Ginzburg-Laudau Equation (Beijing: Science Press) pp121-130 (in Chinese) [郭柏灵, 黄海洋 2002 金兹堡-朗道方程 (北京: 科学出版社) 第121-130页]
[13] Aranson I S, Kramer L 2002 Rev. Modern Phys. 74 100
[14] Du L, Xu W, Li Z, Zhou B 2011 Phys. Lett. A 375 1870
[15] Bartuccelli M, Constantin P, Doering C R 1990 Physica D 44 421
[16] Gao J L, Xie L L, Peng J H 2009 Acta Phys. Sin. 58 5218 (in Chinese) [高继华, 谢玲玲, 彭建华 2009 58 5218]
[17] Chate H, Pikovsky A S, Rudzick O 1999 Physica D 131 17
[18] Ouyang Q 2010 Introduction of Nonlinear Science and Pattern Dynamics (Beijing: Beijing University Press) pp140-142 (in Chinese) [欧阳颀 2010 非线性科学与斑图动力学导论 (第二版) (北京: 北京大学出版社) 第140-142页]
计量
- 文章访问数: 7644
- PDF下载量: 497
- 被引次数: 0