-
基于Fermi黄金法则及Boltzmann方程碰撞项近似理论, 推导建立了(001)弛豫Si1-xGex衬底外延四方晶系应变Si空穴散射几率与应力及能量的理论关系模型, 包括离化杂质、声学声子、非极性光学声子及总散射概率(能量40 meV时)模型. 结果表明: 当Ge组分(x)低于0.2时, 应变Si/(001)Si1-xGex材料空穴总散射概率随应力显著减小. 之后, 其随应力的变化趋于平缓. 与立方晶系未应变Si材料相比, 四方晶系应变Si材料空穴总散射概率最多可减小66%. 应变Si材料空穴迁移率增强与其散射概率的减小密切相关, 本文所得量化模型可为应变Si空穴迁移率及PMOS器件的研究与设计提供理论参考.Based on Fermi's golden rule and the theory of Boltzmann collision term approximation, hole scattering mechanism in strained Si/(001)Si1-xGex, namely, tetragonal strained Si is studied, including ionized impurity, acoustic phonon, non-polar optical phonon and total scattering rates. It is found that the total scattering rate of hole in strained Si/(001)Si1-xGex decreases obviously with the increase of stress when Ge fraction (x) is less than 0.2 and the values continue to show a constant tendency. The total hole scattering rate of strained Si/(001)Si1-xGex decreases about 66% at most in comparison with one of unstrained Si. The hole mobility enhancement in strained Si material is due to the decrease of hole scattering rate. The result can provide valuable references for the research of hole mobility of strained Si materials and the design of PMOS devices.
-
Keywords:
- strained Si /
- scattering rates /
- mobility
[1] Song J J, Zhang H M, Dian X Y, Hu H Y, Xuan R X 2008 ActaPhys. Sin. 57 5918 (in Chinese) [宋建军,张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 57 5918]
[2] Song J J, Zhang H M, Xuan R X, Hu H Y, Dian X Y 2009 ActaPhys. Sin. 58 4958 (in Chinese) [宋建军,张鹤鸣, 宣荣喜, 胡辉勇, 戴显英 2009 58 4958]
[3] Liu H H, Duan X F, Xu Q X 2009 Micron 40 274
[4] Guillaume T, Mouis M 2006 Solid-State Electronics 50 701
[5] Phama A T, Jungemann C, Meinerzhagen B 2008 Solid-State Electronics52 1437
[6] Song J J, Zhang H M, Hu H Y, Fu Q 2009 Science in China 52 546
[7] Demaring N V, Gruetzmacher D A 2008 International Conferenceon Advanced Semiconductor Devices and Microsystems, ASDAM91-94
[8] Wang E X, Matagne P, Shifren L 2006 IEEE Trans. Electron Dev.53 1840
[9] Chen X B, Yan J M, Fang Z 1979 Introduction to Solid StatePhysics (Beijing: Defense Industry Press) p190 (in Chinese ) [陈星弼, 鄢俊明, 方政 1979 固体物理导论 (北京:国防工业出版社)190]
[10] Liu E K, Zhu B S, Luo J S 1994 Semiconductor Physics (Beijing:Defense Industry Press) p367 (in Chinese) [刘恩科,朱秉升, 罗晋生 1994 半导体物理学 (北京:国防工业出版社) 367]
[11] Jacoboni C, Reggiani L 1983 Rev. Mod. Phys. 55 648
-
[1] Song J J, Zhang H M, Dian X Y, Hu H Y, Xuan R X 2008 ActaPhys. Sin. 57 5918 (in Chinese) [宋建军,张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 57 5918]
[2] Song J J, Zhang H M, Xuan R X, Hu H Y, Dian X Y 2009 ActaPhys. Sin. 58 4958 (in Chinese) [宋建军,张鹤鸣, 宣荣喜, 胡辉勇, 戴显英 2009 58 4958]
[3] Liu H H, Duan X F, Xu Q X 2009 Micron 40 274
[4] Guillaume T, Mouis M 2006 Solid-State Electronics 50 701
[5] Phama A T, Jungemann C, Meinerzhagen B 2008 Solid-State Electronics52 1437
[6] Song J J, Zhang H M, Hu H Y, Fu Q 2009 Science in China 52 546
[7] Demaring N V, Gruetzmacher D A 2008 International Conferenceon Advanced Semiconductor Devices and Microsystems, ASDAM91-94
[8] Wang E X, Matagne P, Shifren L 2006 IEEE Trans. Electron Dev.53 1840
[9] Chen X B, Yan J M, Fang Z 1979 Introduction to Solid StatePhysics (Beijing: Defense Industry Press) p190 (in Chinese ) [陈星弼, 鄢俊明, 方政 1979 固体物理导论 (北京:国防工业出版社)190]
[10] Liu E K, Zhu B S, Luo J S 1994 Semiconductor Physics (Beijing:Defense Industry Press) p367 (in Chinese) [刘恩科,朱秉升, 罗晋生 1994 半导体物理学 (北京:国防工业出版社) 367]
[11] Jacoboni C, Reggiani L 1983 Rev. Mod. Phys. 55 648
计量
- 文章访问数: 7543
- PDF下载量: 453
- 被引次数: 0