搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pb-Mg-Al合金腐蚀机理的电子理论研究

段永华 孙勇 何建洪 彭明军 郭中正

引用本文:
Citation:

Pb-Mg-Al合金腐蚀机理的电子理论研究

段永华, 孙勇, 何建洪, 彭明军, 郭中正

Electronic theory of the mechanism of corrosion of Pb-Mg-Al alloy

Duan Yong-Hua, Sun Yong, He Jian-Hong, Peng Ming-Jun, Guo Zhong-Zheng
PDF
导出引用
  • 为了了解Pb-Mg-Al合金腐蚀的物理本质, 本文采用基于第一性原理的赝势平面波方法系统地计算了Pb-Mg-Al合金中各物相的结合能、费米能级和局域态密度等电子结构参数, 分析了合金的电化学腐蚀机理. 计算结果表明:Pb-Mg-Al合金中各主要组成物相稳定性大小关系为 Mg17Al12>Mg2Pb>Mg;Mg,Mg2Pb和Mg17Al12的费米能级存在Ef(Mg)>Ef(Mg2Pb)>Ef(Mg17Al12)的关系, 说明Mg最容易失去电子, Mg2Pb次之, Mg17Al12最难;局域态密度表明, 在同样的外界条件下, 体系中Mg相和Mg2Pb相对于Mg17Al12均处于不稳定的状态, 容易失去电子, 即容易发生腐蚀. Pb-Mg-Al合金体系中不同物相的费米能级差构成了电化学腐蚀的电动势, 导致电子从费米能级高的Mg相和Mg2Pb相流向费米能级低的Mg17Al12相, 使Pb-Mg-Al合金发生腐蚀.
    The cohesive energies, Fermi energies and local density of states (LDOS) are calculated by the first-principles based on pseudopotential plane wave method in this paper to investigate the physical nature of corrosion of Pb-Mg-Al alloy. The mechanism of electrochemical corrosion is analyzed according to the calculated electronic structure parameters. The results show that the stable phase in Pb-Mg-Al alloy is Mg17Al12>Mg2Pb>Mg. The Fermi energy (Ef) values of these phases with Ef(Mg)>Ef(Mg2Pb)>Ef (Mg17Al12) indicate that Mg is most likely to lose electrons while Mg17Al12 is difficult. LDOS result reveals that Mg and Mg2Pb phases are unstable compared with Mg17Al12 in the same external conditions, they are more likely to lose electrons and easier to corrod. The difference in Fermi energy between different phases in Pb-Mg-Al alloy forms the electrodynamic force of the electrochemical corrosion, which leads electrons to flow from the Mg and Mg2Pb phases with higher Fermi energy to Mg17Al12 phase with lower Fermi energy, further to corrode in Pb-Mg-Al alloy.
    • 基金项目: 国家自然科学基金(批准号:50871049)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50871049).
    [1]

    Hofmann W 1970 Lead and lead alloys(New York: Springar- Verlag) p263

    [2]

    Blaskett D R, Boxall D 1990 Lead and its alloys(West Sussex: Ellis Horwood Ltd) p15

    [3]

    Moseley P T 1996 Journal of Power Sources 59 81

    [4]

    Zhong S, Liu H K, Dou S X, Skyllas-Kazacos M 1996 Journal of Power Sources 59 123

    [5]

    Duan Y H, Sun Y, Peng M J 2009 Materials Review 23 47 (in Chinese) [段永华, 孙勇, 彭明军 2009 材料导报 23 47]

    [6]

    Cacciamani G, Borzone G, Saccone A, Ferro R 1989 Journal of the Less-Common Metals 154 109

    [7]

    Wang R J, Zhao H F 2007 Res. Studies Foundry Equip. 2 6 (in Chinese) [王瑞吉, 赵浩峰 2007 铸造设备研究 2 6]

    [8]

    Wang N G,Wang R Ch, Peng Ch Q, Feng Y, Zhang X Y 2011 The Chinese Journal of Nonferrous Metals 21 1314(in Chinese) [王乃光, 王日初, 彭超群, 冯艳, 张翔宇 2011 中国有色金属学报 21 1314]

    [9]

    Wang N G, Wang R Ch, Peng Ch Q, Feng Y, Zhang X Y 2010 Trans. Nonferrous Met. Soc. China 20 1936

    [10]

    Zhang G Y, Zhang H, Fang G L, Yang L N 2009 Acta. Metallurgica Sinica 45 687(in Chinese) [张国英, 张辉, 方戈亮, 杨丽娜 2009 金属学报 45 687]

    [11]

    Zhang G Y, Zhang H, Zhao Z F, Li Y C 2006 Acta Phys. Sin. 55 2439 (in Chinese) [张国英, 张辉, 赵子夫, 李昱材 2006 55 2439]

    [12]

    Zhang G Y, Zhang H, Fang G L, Li Y C 2005 Acta Phys. Sin. 54 5288(in Chinese) [张国英, 张辉, 方戈亮, 李昱材 2006 54 5288]

    [13]

    Zhang G Y, Zhang H, Liu Y X, Zhao Z F, Li Y C 2007 China Foundry Machinery Technology 4 13 (in Chinese) [张国英, 张辉, 刘艳侠, 赵子夫, 李昱材 2007 中国铸造装备与技术 4 13]

    [14]

    Lu L, Sun Y, Duan Y H, Zhao R L, Yin G X 2010 Metallic Functional Materials 17 25 (in Chinese) [鲁俐, 孙勇, 段永华, 赵如龙, 殷国祥 2010 金属功能材料 17 25]

    [15]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J Phys: Condens Matter 14 2717

    [16]

    Marlo M, Milman V 2000 Phys. Rev. B 62 2899

    [17]

    Ren C Y, Shein K I, Ivannovskii A L 2004 Physica B 349 136

    [18]

    Duan Y H, Sun Y, Feng J, Peng M J 2010 Physica B 405 701

    [19]

    Ramachandran V, Ibrahim M Md 1982 Journal of Temperature Physics 47 351

    [20]

    Zhang M X, Kelly P M 2005 Acta Mater 53 1085

    [21]

    Zhou D W, Peng P, Zhuang H L, Hu Y J, Liu J Sh 2004 The Chinese Journal of Nonferrous Metals 15 546 (in Chinese) [周惦武, 彭平, 庄厚龙, 胡艳军, 刘金水 2004 中国有色金属学报 15 546]

    [22]

    Li Y C, Zhang G Y, Wei D, He J Q 2007 Journal of Shenyang Normal University (Natural Science) 25 25 (in Chinese) [李昱才, 张国英, 魏丹, 何君琦 2007 沈阳师范大学学报(自然科学版) 25 25]

    [23]

    Zhou X H, Wei Zh L, Chen Q R, Chen K Sh, Huang Y W 2006 Corrosion and Protection 27 487 (in Chinese) [周学华, 卫中领, 陈秋荣,, 陈开生, 黄元伟 2006 腐蚀与防护 27 487]

    [24]

    Ding W J, Xiang Y Z, Chang J W, Peng Y H 2009 The Chinese Journal of Nonferrous Metals 19 1713 (in Chinese) [丁文江, 向亚贞, 常建卫, 彭颖红 2009 中国有色金属学报 19 1713]

  • [1]

    Hofmann W 1970 Lead and lead alloys(New York: Springar- Verlag) p263

    [2]

    Blaskett D R, Boxall D 1990 Lead and its alloys(West Sussex: Ellis Horwood Ltd) p15

    [3]

    Moseley P T 1996 Journal of Power Sources 59 81

    [4]

    Zhong S, Liu H K, Dou S X, Skyllas-Kazacos M 1996 Journal of Power Sources 59 123

    [5]

    Duan Y H, Sun Y, Peng M J 2009 Materials Review 23 47 (in Chinese) [段永华, 孙勇, 彭明军 2009 材料导报 23 47]

    [6]

    Cacciamani G, Borzone G, Saccone A, Ferro R 1989 Journal of the Less-Common Metals 154 109

    [7]

    Wang R J, Zhao H F 2007 Res. Studies Foundry Equip. 2 6 (in Chinese) [王瑞吉, 赵浩峰 2007 铸造设备研究 2 6]

    [8]

    Wang N G,Wang R Ch, Peng Ch Q, Feng Y, Zhang X Y 2011 The Chinese Journal of Nonferrous Metals 21 1314(in Chinese) [王乃光, 王日初, 彭超群, 冯艳, 张翔宇 2011 中国有色金属学报 21 1314]

    [9]

    Wang N G, Wang R Ch, Peng Ch Q, Feng Y, Zhang X Y 2010 Trans. Nonferrous Met. Soc. China 20 1936

    [10]

    Zhang G Y, Zhang H, Fang G L, Yang L N 2009 Acta. Metallurgica Sinica 45 687(in Chinese) [张国英, 张辉, 方戈亮, 杨丽娜 2009 金属学报 45 687]

    [11]

    Zhang G Y, Zhang H, Zhao Z F, Li Y C 2006 Acta Phys. Sin. 55 2439 (in Chinese) [张国英, 张辉, 赵子夫, 李昱材 2006 55 2439]

    [12]

    Zhang G Y, Zhang H, Fang G L, Li Y C 2005 Acta Phys. Sin. 54 5288(in Chinese) [张国英, 张辉, 方戈亮, 李昱材 2006 54 5288]

    [13]

    Zhang G Y, Zhang H, Liu Y X, Zhao Z F, Li Y C 2007 China Foundry Machinery Technology 4 13 (in Chinese) [张国英, 张辉, 刘艳侠, 赵子夫, 李昱材 2007 中国铸造装备与技术 4 13]

    [14]

    Lu L, Sun Y, Duan Y H, Zhao R L, Yin G X 2010 Metallic Functional Materials 17 25 (in Chinese) [鲁俐, 孙勇, 段永华, 赵如龙, 殷国祥 2010 金属功能材料 17 25]

    [15]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J Phys: Condens Matter 14 2717

    [16]

    Marlo M, Milman V 2000 Phys. Rev. B 62 2899

    [17]

    Ren C Y, Shein K I, Ivannovskii A L 2004 Physica B 349 136

    [18]

    Duan Y H, Sun Y, Feng J, Peng M J 2010 Physica B 405 701

    [19]

    Ramachandran V, Ibrahim M Md 1982 Journal of Temperature Physics 47 351

    [20]

    Zhang M X, Kelly P M 2005 Acta Mater 53 1085

    [21]

    Zhou D W, Peng P, Zhuang H L, Hu Y J, Liu J Sh 2004 The Chinese Journal of Nonferrous Metals 15 546 (in Chinese) [周惦武, 彭平, 庄厚龙, 胡艳军, 刘金水 2004 中国有色金属学报 15 546]

    [22]

    Li Y C, Zhang G Y, Wei D, He J Q 2007 Journal of Shenyang Normal University (Natural Science) 25 25 (in Chinese) [李昱才, 张国英, 魏丹, 何君琦 2007 沈阳师范大学学报(自然科学版) 25 25]

    [23]

    Zhou X H, Wei Zh L, Chen Q R, Chen K Sh, Huang Y W 2006 Corrosion and Protection 27 487 (in Chinese) [周学华, 卫中领, 陈秋荣,, 陈开生, 黄元伟 2006 腐蚀与防护 27 487]

    [24]

    Ding W J, Xiang Y Z, Chang J W, Peng Y H 2009 The Chinese Journal of Nonferrous Metals 19 1713 (in Chinese) [丁文江, 向亚贞, 常建卫, 彭颖红 2009 中国有色金属学报 19 1713]

  • [1] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究.  , 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] 陈暾, 崔节超, 李敏, 陈文, 孙志鹏, 付宝勤, 侯氢. 合金元素Sn, Nb对锆合金腐蚀氧化膜相稳定性影响的第一性原理研究.  , 2024, 73(15): 157101. doi: 10.7498/aps.73.20240602
    [3] 孙士阳, 迟中波, 徐平平, 安泽宇, 张俊皓, 谭心, 任元. 金刚石(111)/Al界面形成及性能的第一性原理研究.  , 2021, 70(18): 188101. doi: 10.7498/aps.70.20210572
    [4] 付正鸿, 李婷, 单美乐, 郭糠, 苟国庆. H对Mg2Si力学性能影响的第一性原理研究.  , 2019, 68(17): 177102. doi: 10.7498/aps.68.20190368
    [5] 程超, 王逊, 孙嘉兴, 曹超铭, 马云莉, 刘艳侠. Cr含量对Ti-Nb-Cr合金抗腐蚀性影响的电子结构计算.  , 2018, 67(19): 197101. doi: 10.7498/aps.67.20180956
    [6] 侯清玉, 李勇, 赵春旺. Al掺杂和空位对ZnO磁性影响的第一性原理研究.  , 2017, 66(6): 067202. doi: 10.7498/aps.66.067202
    [7] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究.  , 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [8] 高云亮, 朱芫江, 李进平. Al辐照损伤初期的第一性原理研究.  , 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [9] 周鹏力, 史茹倩, 何静芳, 郑树凯. B-Al共掺杂3C-SiC的第一性原理研究.  , 2013, 62(23): 233101. doi: 10.7498/aps.62.233101
    [10] 卢志鹏, 祝文军, 卢铁城. 高压下Fe从bcc到hcp结构相变机理的第一性原理计算.  , 2013, 62(5): 056401. doi: 10.7498/aps.62.056401
    [11] 梁培, 刘阳, 王乐, 吴珂, 董前民, 李晓艳. 表面悬挂键导致硅纳米线掺杂失效机理的第一性原理研究.  , 2012, 61(15): 153102. doi: 10.7498/aps.61.153102
    [12] 韩清瑶, 汤俊超, 张弨, 王川, 马海强, 于丽, 焦荣珍. 局域态密度对表面等离激元特性影响的研究.  , 2012, 61(13): 135202. doi: 10.7498/aps.61.135202
    [13] 侯清玉, 赵春旺, 李继军, 王钢. Al高掺杂浓度对ZnO导电性能影响的第一性原理研究.  , 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [14] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析.  , 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [15] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究.  , 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [16] 关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭. Al和Ni共掺ZnO光学性质的第一性原理研究.  , 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [17] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质.  , 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [18] 杨银堂, 武 军, 蔡玉荣, 丁瑞雪, 宋久旭, 石立春. p型K:ZnO导电机理的第一性原理研究.  , 2008, 57(11): 7151-7156. doi: 10.7498/aps.57.7151
    [19] 朱建新, 李永华, 孟繁玲, 刘常升, 郑伟涛, 王煜明. NiTi合金的第一性原理研究.  , 2008, 57(11): 7204-7209. doi: 10.7498/aps.57.7204
    [20] 张国英, 张 辉, 赵子夫, 李昱材. 杂质对镁合金耐蚀性影响的电子理论研究.  , 2006, 55(5): 2439-2443. doi: 10.7498/aps.55.2439
计量
  • 文章访问数:  7714
  • PDF下载量:  660
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-31
  • 修回日期:  2011-07-04
  • 刊出日期:  2012-02-05

/

返回文章
返回
Baidu
map